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Problem Formulation: Online and Finite Sum
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Problem Formulation

Consider the optimization problem:

2|~

min F'(x) := —Zf(x,&) (P)

xeX

e X C R where d is problem dimension
® ¢, indexes the data points/observations/samples

® N is the size of data set
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® Online optimization or N — 00

min F'(x) := E¢ [f(x, )]

xeX

® Use a regularizer h

xméi)r(l R(x) := F(x) + h(x)

® Distributed/decentralized setting with K nodes

K
min ZRk(X)
k=1

xeX



Challenges of Big Data

® |arge dimension d
® Hessian inverse [V?F(x)] ™" requires O(d*) computations
® Approximate Hessian inverse still requires O(d?) computations, e.g., BFGS
® V\ery large d: must store x on the disk instead of RAM, write operation is bottleneck
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® |arge dimension d
® Hessian inverse [V?F(x)] ™" requires O(d*) computations
® Approximate Hessian inverse still requires O(d?) computations, e.g., BFGS
® \ery large d: must store x on the disk instead of RAM, write operation is bottleneck

® | arge dataset size NV

® Even calculating the gradient VF(x) at every iteration impractical
® Cannot store entire data on a single machine
® Read/write operations become the bottleneck

® |deally complexity should be O(dN)
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Example: Lasso Regression

Predictors for breast
cancer selected via
LASSO regression
[Wang et al., 2016]

Coefficient

Variables Premenopausal Postmenopausal
Age 0.367 0.346
Body mass index 0.935
Age at menarche —0.075
Age at 1st give birth 0.141
Number of parity 0.137 —0.184
Breast feeding —0.110
QOral contraceptive —0.090
hormone replace treatment —0.710
Case number of BCFDR 0.855 0.844
Benign breast diseases 0.296
Alcohol drinking 0.631

LAN 0.264 0.238
Sleep quality —0.256 —0.122

Age (20, 30, 40, 50, 60, 70, and >70 years old); body mass index (<18.5, 18.5-24, 24-27, and
>27); age at menarche (<12, 12, 13, 14, 15, and 16~ years old); age at 1st give birth (<20, 20-25,
and 25~ years old); number of parity (0, 1, 2, and >2); breast feeding duration (no, <1, 1-3 and,
>3 years); LAN (1, dark; 2, few light; and 3, little bright); sleep quality (1, good; 2, common; 3, poor;
and 4, poor with sleep pill). BCFDR=breast cancer in first degree-relatives, LAN=light at night,
LASSO = least absolute shrinkage and selection operator, SD = standard deviation.
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Example: Lasso Regression

Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

e Optimization problem formulated as

mln—ZEa x,b;) + A ||x||;

xeRd N

® | oss function ¢ could be least-squares, logistic, hinge loss, etc.
® Non-zero entries of x correspond to features that explain b;

® /i-norm penalty “encourages”’ sparsity
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Example: Visual Object Recognition

CIFAR-10 dataset
contains 60000 labeled
images of 10 objects
[Krizhevsky, 2009]
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mln—Zf (ay, b;)
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Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network
® elements of x are weights/parameters of the network

VxNN(a;,x) can be efficiently calculated via back-propagation
® Deep Learning community focuses on designing NN

® Optimization community focuses on solving (GD) for general f
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Example: Recommender Systems

" > -
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Buy It Again in Pets

Buy It Again in Baby Products

Engineering Books
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Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq
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Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq

Find the complete matrix X

If X is suspected to be low-rank, solve [Recht et al., 2011]

> (Miy— Xij)* + MIX|,

min @
my1 Xmg
XeRy (1,5)EQ

Here, | X]||, encourages X to be low-rank

High-dimensional problem: since d = myms > |Q| = N
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@ Context

State-of-the-art and Oracle Complexity
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How to compare?

Which is better: GD or SGD?

Which variant of SGD should | use for a given problem?

Such questions arise in any field

® Sometimes left unanswered, e.g. in, Deep Learning

But, the landscape of SGD is much more structured
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Oracle Complexity

® Given x, an oracle provides us V f(x,&;)

® (Call to an oracle costs 1 unit
® So an algorithm that makes fewer calls to the oracle is better!
[ ]

Oracle complexity is the cost required to obtain a desired accuracy
Oracle complexity of SGD: convex objectives

L . . Ld ,
For general convex objective functions, SGD requires O(—;) calls to oracle in order to
€
achieve an optimality gap of e.

® Terms within O may be initialization dependent
® Notation hides away many complexities

% IVE)?, or F(x) — F(x¥)

e Gap measured by ||x — x*|
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State-of-the-art in SGD

® New avenues for applying SGD emerge every year

Several variants of SGD are proposed every month

Papers analyzing performance of these variants come up everyday

Difficult to consolidate and maintain perspective
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This Tutorial

® Unified view of many SGD variants

® Based on recent results, but readily accessible: “easy” math

® First timers: do not try to understand it all, but do ask questions

® Up-and-comers: identify gaps and target them, also keep asking questions
® [xperts: what new result am | unaware of?

® |ater: get slides from my website
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@® Background

Convexity
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Convex Functions: Zeroth Order Condition

Definition
A function f is convex if (a) its domain is a convex set; and (b) it satisfies

fOx+(1—0)y) <Of(x)+(1—06)f(y)
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Convex Functions: First and Second Order Conditions

Definition
A function f is convex if (a) its domain is a convex set; and (b) it satisfies

fy) 2 fx) +(Vf(x),y —%)

Alternatively: eigenvalues of (V2F(x)) > 0
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Strongly Convex Functions: Quadratic Lower Bound
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A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies

F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p
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Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies
v
F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p

f5-norm square example

1
The function f(x) = 3 |x]|? is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

Za x = bi)? + Al

. . 1
Show that for this case ;1 = smallest eigenvalue of N ZaiaiT 2%
Al



@® Background

Smoothness
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Smooth Functions

/77001‘6
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Smooth Functions: Quadratic Upper Bound

Definition
A function F'is L-smooth

F(9) < 169 + (V160 y =) + & [x ~ ¥

Alternatively: eigenvalues of (V2F(x)) < L
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Bregman Divergence

® Bregman divergence over a function F' is defined as

Dr(x,y) = F(y) — F(x) —(VF(x),y — x)
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Bregman Divergence

® Bregman divergence over a function F' is defined as
DF(X7Y) = F(y) - F(X) - <VF(X)7y - X>

® Bregman divergence is not symmetric (and not a metric) but satisfies

L
Elx—yI* <Dr(xy) < 5 Ix -yl
1 1
o IVF) = VEG)I? <Dr(x,y) < 5 IVF(0) = V()
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@® Background

Subgradients, projection, and proximal operators
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Non-smooth convex functions

® If h is non-smooth convex, may still define subgradient v(x) € dh(x)
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Non-smooth convex functions

® If h is non-smooth convex, may still define subgradient v(x) € dh(x)

e Satisfies first order convexity condition as usual

fFy) =2 f(x) +({v(x),y —x)

® Optimality condition for x* = argmin f(x):
X

v(x*) =0 € Oh(x")

32



Projection Operator

® Define the projection over a set X as

1
P (x) = argmin 3 [y — x|
yeX
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Projection Operator

® Define the projection over a set X as

1
P (x) = argmin 3 [y — x|
yeX

® Equivalent formulation
1 2
P (x) = argmin o [ly — x[|” + 1 (x)
y

where the indicator function is defined as

0 xeX

L) = o x¢X
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Proximal Operator

® Proximal operator generalizes projection

1
prox, () = y* = axgmin 5 [ly = x| + h(x)
Yy

34



Proximal Operator

® Proximal operator generalizes projection
* : 1 2
prox, (x) = y* = arg min 3 ly — x||“ + h(x)
y
® Useful property: differentiate and equate to zero
y'—x+v(y*) =0

where y* = prox;,(x) and v(y*) € 0h(y”*)

34



Vanilla Stochastic Gradient Descent: Large N
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© Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent
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Gradient Descent vs. Stochastic Gradient Descent

® Gradient descent for solving (P)

x¢+1 = Py (Xt - *va xt, & )

® N oracle calls per iteration

37
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® Gradient descent for solving (P)

x¢+1 = Py (Xt - *va xt, & )

® N oracle calls per iteration

e Stochastic gradient descent for solving (P)

X1 = Px (x¢ =V f(x4,&,))

where iy € {1,..., N} is a random number.
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Gradient Descent vs. Stochastic Gradient Descent

® Gradient descent for solving (P)

N
xi11 = Px (Xt — % Z Vf(&efi))
=il

® N oracle calls per iteration

e Stochastic gradient descent for solving (P)
Xe+1 = P (xe — 0V f (e, &i,))

where iy € {1,..., N} is a random number.
® Descent direction on average: expectation w.r.t. i,

N

Ei, [Vf(xt,&.)] = %Z f(x¢,&) = VF(x)
i=1

37



® SGD more efficient at accessing data
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Intuition

® SGD more efficient

at accessing data

® handles redundancy
in dataset better

® consider lasso
example: features
a; ©
span(a(l), a(2),a(3))

1072

107

GD
10°

=]

5GD

]

0

1000 2000 3000 4000 5000 6000 7000
# gradient calcuations

BOOD 9000 10000
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History of SGD

® Given (X,Y) observations, let ®(X) be a transformation

® SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient
LMS (Widrow-Hoff'60) %(Y — ®(X) 'x)? (®(X) 'x — Y)®(X)
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History of SGD

® Given (X,Y) observations, let ®(X) be a transformation

® SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient
LMS (Widrow-Hoff'60) %(Y — ®(X) 'x)? (®(X) 'x — Y)®(X)
Perceptron (Rosenblatt'57) [—Y(®(X),x)]+ —Y®(X) 1y (a(x) x)<0
SVM (Cortes-Vapnik'95) g [ + [1 = Y(R(X),x)]+ Ax — Y®(X)Ly(ax)x)<1
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© Vanilla Stochastic Gradient Descent: Large N

Performance of Stochastic Grandient Descent
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L-smoothness

2

Dp(x,y) < — |lx -yl

Nlie
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L-smoothness [-convexity

2

Dp(x,y) < — |lx -yl

Nlie

U
Dr(x,y) > 5 % — YHQ
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L-smoothness [-convexity

Nlie

I
Dr(x,y) < = |x—y]|? Dp(x,y) > §H><—yH2

Bounded Variance

Ei, [IVS(x,&)I7] < 0+ cIVF ()]
= Eit |:va(X*7€Zt)H2} < o’

provided VF(x*) =0 and ¢ > 1.
o2 is the inherent data variance
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Strong Convexity and Smoothness: Condition Number

(Smé”.‘-i =L/n) (large k = L/ )

42



Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O () )
JL€
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Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O () )
JL€

For simplicity, consider unconstrained version: x;11 — x¢ = nV f(x¢,&;,)
Proof: Step 1. Quadratic upper bound (L-smootheness):

L
F(x¢y1) < F(xt) + (VF(Xt), %441 — %¢) + > 41 — x|

43



Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O <> )
JL€

For simplicity, consider unconstrained version: x;11 — x¢ = nV f(x¢,&;,)
Proof: Step 1. Quadratic upper bound (L-smootheness):

Plxear) < () + (VF(xe), X0 30 + 2 e —
2
- F(xt) - T/<VF(Xt)7 vf(xf£7t)> + % va(xtvfit)HZ

Update Equation
X1 — Xt =V f (x4, &) J

43



SGD: Strongly Convex + Smooth

Step 2. Take expectation

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LB, (19 )]
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SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~ n(VF(x), VEG) + VB, (197600 8)1P]
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SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]
n?0?L
2

< F(x¢) — 77<177L(’) IVE(x )Hg +

Ei, [IV£(x )]
<o’ +c|VF)?
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SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

nLe <1 |

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]

- nLc 77202L
< Flx) = (175 IVFG I + T
n 9 77 oL
< F(x) — 3 IVF(x)]l5 + 5
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SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]

7720'2L
2

< F(x¢) — 77(177L(> IVE(x )Hg +

n?c2L
2

,,
< F(xe) = 5 IVF(x)l3 +

Function decrement in SGD J

Function value decreases (on average) only when the gradient is large!
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SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

n?02L

By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=
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SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

2 2
L
By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=
n?o’L

< (1—pm)(F(x) = F(e) + 2

% IVE)|® > (P (x:) — F(x¥)) J
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SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

2 2
L
By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=
n?o’L

< (1—pm)(F(x) = F(e) + 2
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SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

n?02L

Ei, [F(xt11)] —F (") SF(Xt)—F(X*)—gHVF( x0)||° + 5~ 5

%9
oL
—1—77

Set Ay = E[F(x441) — F(x")]

One-step inequality

252,
A1 < (1— pm) Ay + 2
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SGD: Strongly Convex + Smooth

One-step inequality

n?0?L

A1 < (1 —pn)Ag + 5

Step 4. Obtain final inequality:
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SGD: Strongly Convex + Smooth

One-step inequality

2 2
oL
Appr < (1 — pm)Ag + 3
Step 4. Obtain final inequality:
Apply recursively over t =1,... 1"
2 2
o°L 1
Arpr < (1—pm) Ay + d SR
I
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SGD: Strongly Convex + Smooth

Final inequality

no’L
20

App < (1—pn)TAr +

Step 5. Pick n:
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SGD: Strongly Convex + Smooth

Final inequality

no’L

Aryr < (1—pm)" Ay + 7
1

Step 5. Pick n:

€\ . :
® Equate each term to € = n = O(J’L;—L) (ignore unimportant constants)
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SGD: Strongly Convex + Smooth

Final inequality

no’L
20

App < (1—pn)TAr +

Step 5. Pick n:

€\ . :
® Equate each term to € = n = O(J’L;—L) (ignore unimportant constants)

® Solve for T: (1 — un)T = € and use log(1 — un) ~ —pun to obtain

2 2
T=0 (JLlog <1)> ~ 0 <0L>
L€ € 1€
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Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)
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Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)

® Can select a diminishing step-size to obtain slight improvement
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Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)
® Can select a diminishing step-size to obtain slight improvement

® Other approach: half the step-size when progress stalls [Bottou et al., 2018]

E[F (wy)]
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Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

L
For L-smooth functions, SGD incurs oracle complexity of O (2> .
€
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Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

L
For L-smooth functions, SGD incurs oracle complexity of O (2> .
€

Proof for unconstrained version: x;1 —x; = nV f(x4,&;,)-
Recall from L-smoothness and nLc < 1 (here: A, = E[F(x;)] — F(x*) > 0):

7720'2L
2

App1 < Ay — ﬂ IVF ()| +

T?]O‘L

<A - ZHVF )| +
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SGD: Smooth

® Rearrange to obtain:

=

2A
min B[ VF(x, )I2] Z IVE(x)]2] < n02L+n—TI
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SGD: Smooth

® Rearrange to obtain:

=

2A
min B[ VF(x, )I2] Z IVE(x)|2] < no’L + TTI
® Equate each term to € to obtain n = QLL and

r-o(%)

oracle calls required to reach close to a first order stationary point
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Variance-Reduced SGD: Moderate N

Bl



Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent
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= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations
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Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations

® But each iteration requires N oracle calls: so oracle complexity is O (7 log(g)>
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Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations
® But each iteration requires N oracle calls: so oracle complexity is O (7 log(g)>

® |n contrast, SGD requires O (i) oracle calls: independent of NV
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Speeding up SGD?

log(excess loss)

GD

# oracle calls
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Speeding up SGD?

log(excess loss)

GD
177

# oracle calls

53]



Variance Reduction

® We consider the generic SGD algorithm:

Xi+1 = X¢ — N8t

where g; is an unbiased gradient approximation
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Variance Reduction

® We consider the generic SGD algorithm:

Xi+1 = X¢ — N8t

where g; is an unbiased gradient approximation

® Example:
N
g =% VIikx,&) (GD)
i=1
g = Vf(xt &) (SGD)
(mini-batch)
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Variance Reduction

® We consider the generic SGD algorithm:
X+l = X — N8t

where g; is an unbiased gradient approximation

® Example:
N
= Z F(xt, &) (GD)
- ( f7€if) (SGD)
g = ?va X¢, & (mini-batch)
eB
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Effect of Mini Batching

e Consider b random variables {X;}?_, such that V;(X;) = o
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e Consider b random variables {X;}?_, such that V;(X;) = o
® Then it holds that V,(3 ZXZ) = %2
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Effect of Mini Batching

e Consider b random variables {X;}?_, such that V;(X;) = o
® Then it holds that V,(3 ZXZ) = %2

® So

# of iterations = (’)(ﬁ log (%))
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Effect of Mini Batching

Consider b random variables {X;}?_; such that V;(X;) = ¢*
Then it holds that V;(} ZXZ) = %2

® So
# of iterations = O(,5 log (1))
® But each iteration requires b oracle calls: oracle complexity still same
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Effect of Mini Batching

Consider b random variables {X;}?_; such that V;(X;) = ¢*
Then it holds that V;(} ZXZ) = %2

® So

# of iterations = (’)(ﬁ log (%))

But each iteration requires b oracle calls: oracle complexity still same

In practice: lesser wall-clock time if gradients can be calculated in parallel

55



Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 51) = f(Xa fi)*ajx

so that the overall objective remains the same, i.e.,

N

O(x) =% > f(x&)—al x = F(x)

i=1

provided that Zai = 0.

)
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Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 51) = f(Xa fi)*ajx

so that the overall objective remains the same, i.e.,

N
O(x) =% ¥ f(x,&)-a] x = F(x)
=1
provided that Zai = 0.

e Note that Vo(x, &) = V(x, &)—a
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Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 52) = f(Xa 51)7aLTX
so that the overall objective remains the same, i.e.,

N
o(x) = 43 flx&)-al x = F(x)
3=l

provided that Zai = 0.

e Note that Vo(x, &) = V(x, &)—a

® Recall that SGD performance depends on variance at x*

Vi, [IVF(x*, &)1 < 0
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Intuition: Shifted SGD

Shifted gradient

v¢(xa gL) - Vf(X, ‘Ei)_ai

® Goal: select a; so that V;, [Vo(x*,&;,)] is small
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Shifted gradient

v¢(xa gL) - Vf(X, ‘Ei)_ai

® Goal: select a; so that V;, [Vo(x*,&;,)] is small
® Hypothetically, V;, [Vo(x*,&;,)] = 0 requires

a; = vf(x*7£i)
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Intuition: Shifted SGD

Shifted gradient

Vo(x, &) = VI(x,&)—a

® Goal: select a; so that V;, [Vo(x*,&;,)] is small
® Hypothetically, V;, [Vo(x*,&;,)] = 0 requires

a; = vf(x*7£i)

® Not practical as x* unknown
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Intuition: Shifted SGD

Shifted gradient

Vo(x, &) = VI(x,&)—a

Goal: select a; so that V;, [Vo(x*,&;,)] is small
Hypothetically, V;, [Vo(x*, &, )] = 0 requires

a; = vf(x*7£i)

Not practical as x* unknown

Clue: availability of estimates of V f(x*,&;) can help!
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Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]
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Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]

® Suppose the unbiased gradient approximation g; satisfies:

E¢[||g:l*] < 2ADp(x¢,x*) + Bo}
Et[UtJrl] (1= p)oi +2CDp(x¢, x¥)

where A, B, C, 0?, and p > 0 are some constants (depend on L, p, N) and Eq[-]
is expectation with respect to the random data index at iteration ¢
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Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]

® Suppose the unbiased gradient approximation g; satisfies:

E¢[||g:l*] < 2ADp(x¢,x*) + Bo}
Et[UtJrl] (1 - p)oi 4+ 2CDp(x,x¥)

where A, B, C, 0?, and p > 0 are some constants (depend on L, p, N) and Eq[-]
is expectation with respect to the random data index at iteration ¢

Lemma (Simplified version of [Gorbunov et al., 2019])
The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 750,11 Bo

where By depends only on the initialization.
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Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.
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Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.

Proof: Step 1: Expand the squares

%t 41 — X*HZ = |lx¢ —x* — 77gtH2

= ||x¢ — X*”Q — 2n(x; — x*, &) + 0 HgtH2
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Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])
The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.

Proof: Step 1: Expand the squares and use unbiased property E;[g;] = VF(x;):

%t 41 — X*HZ = |lxt —x* — 77gtH2
= ||x¢ — X*”Q — 2n(x; — x*, &) + 0 HgtH2
= Ey[|lxi1 — x*|1°] = [lxe — x*|% — 2n(x¢ — x*, VF(x0)) + n°Ee||ge]|]
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Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]
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Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]
< (1-np) |Ixe — x*||* = 20D p(xe, x*) + 0°Ey[||ge])?]

Step 2: Use Strong Convexity
Dp(x¢,x*) + Dp(x*,x¢) =
(x¢ —x*, VF(x1)) > p|lx = y|?
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Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]
< (1-np) |Ixe — x*||* = 20D p(xe, x*) + 0°Ey[|ge])?]

Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eqlllxe+1 — x[1%] < (1 = mpe) e = x*||* + 20 (An — 1) D (x4, x*) + BriPo}

60



Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eqlllxe+1 — x[1%] < (1 = mpe) e = x*||* + 20 (An — 1) D (x4, x*) + BriPo}
ZBr/ ET[ [+1]< QBI/ (1 - ) + QBI ZCDF‘(Xf 5 )
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Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eelllxe41 — x*|*] < (1 = np) lIxe — x*1|* + 20 (An — 1) Dp(x¢, X*) + Bn’o7
+ ) ZBU Et[o 1+1]< QB’/ (1— P)UL + QB’ 2CDp(xt,x%)

B
Eflxe1 — x*||* + 2 pn 0741]

< (1= pm) llxy = x| + (1= §) 22202 4+ 20 (42222€ _ 1) D (x;, )

60



Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eelllxe41 — x*|*] < (1 = np) lIxe — x*1|* + 20 (An — 1) Dp(x¢, X*) + Bn’o7
+ ) ZBU Et[o 1+1]< QB’/ (1— P)UL + QB’ 2CDp(xt,x%)

nN=g—b—
1= Ap+2BC J

B
Eflxe1 — x*||* + 2 pn 0741]

A 0
< (1= pm) llxy = x| + (1= §) 22202 4+ 20 (42225€ — 1) D, )
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Variance Reduced SGD: Proof

Take full expectation

2 | 2Bnp? . 2 | 2Bnp® 2
Eflxe1 — x| + 22202, 1] < (1 - min{ 50, §3) Ellx: - x*|* + 2207
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Variance Reduced SGD: Proof

Take full expectation and apply recursively

2 2Bn? : 2 2Bn?
Efllxi1 - x*|” + 2202, < (1 - min{ 457, §}) Elllx, — x*|* + 2227

. t 2
< (1 — min{Hze, g}) E[[|xo — x*||* + 23%0(2)}
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Variance Reduced SGD: Proof

Take full expectation and apply recursively

”2 2Bn% 2 2Bn% 2

. 2
+ 2228521 < (1 - min{ 857 §}) Elllx — x*|” + 22207

Efllxt1 —x*

. t 2
< (1 — min{Hze, g}) E[[|xo — x*||* + 23%0(2)}

Equivalently, to get E[||x741 — x*||*] < € needs

T =

1 1
log () L loe(e)
] 1 : ) P min{ £~ £
— log = mln{m, 5} AP+QBC7 2
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@ Variance-Reduced SGD: Moderate N
SAGA and SVRG
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SAGA

Pick i; at random from {1,2,..., N}
hi J # it

b o
vf(xta élt) J=u

+1 =

P CR by
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SAGA

Pick i; at random from {1,2,..., N}

t+1 — . .
vf(xta élt) J=u
=h¥ , —h¥*+— Z hi
N
1 7
= ht
bow W Y
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SAGA Approximation is Unbiased

Unbiased? E;, [g] = E;, [hétﬂ} —E;, [hﬂ + % ZN: h;
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SAGA Approximation is Unbiased

B, g = B, ] [ + 4 3

= VF(xy)

E;, [Vf(xt,&,)] = VF(xt) J
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SAGA Approximation is Unbiased
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SAGA Approximation is Unbiased

B, g = B, ] [ + 4 3

s
Il
_.

= VF(x)
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SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write

B = V(%0 i) -V (X", &) + VI, &) — Bt — Ej, |Vf(x*, ;) — bi]
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SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write

gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft - Ei/, {Vf(x*, EU) - h;‘f}
Eit [Y}
]

E[|[X +Y — E[Y]||"] < 2E[|X||") + 2E[|IY|*] |

= X + Y ~

B [lel] < 28, (1900 60) - V0, )IF] + 28, |

hi' — Vf(x*,&,)
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SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

B, [lgdl?] < 2B, (V76 &) — VA6 €0)I17] + 28, [ b — Vf(x*,&)

2
I

N N
=2 IVI(xe. &) = VI )P+ 2D ||hi - VxS &)
1=1 i=1
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SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

B, [lgdl?] < 2B, (V76 &) — VA6 €0)I17] + 28, [ b — Vf(x*,&)

2
I

N N
=2 IVI(xe. &) = VI )P+ 2D ||hi - VxS &)
=il =il

< 4L.DF(X1§,X*) + 20152
L-smoothness
o5 IV F(x1,6) — V&)1 <
%, &) — F(x*,6) — (V" &), % — x°)
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SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

hi' — Vf(x*,&,)

B [lel] < 28, 19505 60) - VA0, 6)17] + 28, |

Z

N
= % Z va(XI‘/SY) - Vf(X*’gi)HZ + % Z Hhilf - vf(x*7§Z)H2
=1

=1
< ALDp(x;,x*) + 207

A=2L B=2 J
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SAGA Approximation: o?

Recall that

)

2=

h! j # iy with prob. (1 —
1

hj
' Vf(x1,&,) = ir with prob.

+1 —
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SAGA Approximation: o?

Recall that

. h j # iy with prob. (1— %)
Vf(x¢,&,) J =it with prob. %

N . 2
=& [<1 — ) |[pd = Vi )|+ R 19 Ge ) - wo«tmnﬂ
< (1 = %) ol + %Dp(xt,x*)

o IV F(xe, &) — V(x4 &)|° <
f(x,&) — f(x*,&) — (Vf(x*,&),x —x5)

L-smoothness
I 66



SAGA Approximation: o?

Recall that

h{ j # i with prob. (1 _ %)
Vf(x¢,&,) J =it with prob. %

j=1
N , 2

=4 [(1 — %) bl - vree )| + 195 &) = VI, )1
j=1

< (1 — %) 0? + %Dp(xt,x*)
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SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

(@) (max {N, %} log (%))
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SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

@ (max {N, %} log (%))
Algorithm Oracle Complexity Storage
GD N x £ x log() d
SGD 1 x ﬁ X % d
sAGA | max{N, L} x log(L) | dN
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SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

@ (max {N, %} log (%))

Algorithm Oracle Complexity Storage
GD N x £ x log() d
SGD 1 x ﬁ X % d
sAGA | max{N, L} x log(L) | dN

Improves over SGD when N is not too large but high storage
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Loopless SVRG

® Consider the loopless SVRG proposed in [Kovalev et al., 2019]
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® Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 = ] 1
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® Consider the loopless SVRG proposed in [Kovalev et al., 2019]
® A “loopless” modification of SVRG [Johnson and Zhang, 2013]
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g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 = ] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration
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Loopless SVRG

Consider the loopless SVRG proposed in [Kovalev et al., 2019]
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A “loopless” modification of SVRG [Johnson and Zhang, 2013]
Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 = ] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

Unbiased gradient
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Loopless SVRG

Consider the loopless SVRG proposed in [Kovalev et al., 2019]
A “loopless” modification of SVRG [Johnson and Zhang, 2013]
Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 = ] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

Unbiased gradient

Eit [gt} = E’it [vf(xtv élt)] - Eiz [Vf(Yta fu)] + VF(Yt)
= VF(xy)
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Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

gt = Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - vf(yff fi/ )}
= X + Y — E;, [Y]

75
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As in SAGA, add and subtract V f(x*,§;,) to write

gt = Vf(Xt, &t)_vf(x*v 571‘) + Vf(X*, glt) - vf(ylfv flt) - E’f/, [V,f(X*: ffi,/,) - v.f(yfa fi/ )}
= X + Y — E;, [Y]

B, [ledl®] < 2E:, [IV5(xt, &) = VFG6)I] + 2B, IV (30, 6) — VI, €)1

N N
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L-smoothness
o IV F(x1,6) — VI &)I17 <
F, &) — Fx*,6) — (VX" ), % — x°)

69



Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

= Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - v.f(yfa fi/ )}
- X + Y — E,Y)

Ey, |[lgl’] < 2B, [Hw<xt,a,> = VO &DIP] + 2B, [IVF e &) — VFG )]
N N
R 2 IVFxe &) = VEES 7+ F D IIVF(ye &) — VA &)
i=1

i=1
< ALDp (x4, x*) + 207
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Loopless SVRG: o7}

Recall that

y:+ with prob. (1 )
Yi+1 = ) 1
x;  with prob. & (calculate VF'(x;)
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Loopless SVRG: o7

Recall that

{yt with prob. (1— %)
Yi+1 =

x¢  with prob. % (calculate VF(x;)

N
Ei [0711] = & DBV (yer1,€5) = V(xS &)II7)

7=1
N

=3 [(1- 2) IVF &) - VIS E)IP + % IV Fx0,65) — VI, )17
j=1

< (1 = %) o? + %Dp(xt,x*)

L-smoothness

o IV F(xe, &) — V(x4 &)|° <
Fx,&) — F(x*, &) — (VF(x" &), x —
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Loopless SVRG: o7

Recall that

{yt with prob. (1 )
Yi+1 =

x¢  with prob. % (calculate VF(x;)

N
Ei [071] = & ZE[HVf(yHl,ﬁj) — V(x5

N
(1= 2) IVF5:6) = VI + & 195 (i, €5) = V()17

< (1-%)o7 + 2 Dr (x4, x¥)
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Loopless SVRG: Summary

Algorithm Oracle Complexity Storage
GD N x L x log(y) d
SGD 1ox & X 1 d
sAGA | max{N, L} x log(l) | dN
LSVRG | max{N,E} x log(1)| d
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Loopless SVRG: Summary

Algorithm Oracle Complexity Storage
GD N x L x log(y) d
SGD 1 x % X % d

o=

sAGA | max{N, L} x log(l) | dN

LSVRG | max{N,E} x log(1)| d

Loopless SVRG has almost same number of gradient calculations as SAGA but requires

same storage as SGD
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@ Variance-Reduced SGD: Moderate N

State-of-the-art and Open Problems
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Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term
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Accelerated Variants

Accelerated GD proposed by Nesterov in 1983: uses a momentum term

But acceleration has not been achieved for classical SGD

Indeed, momentum SGD is prone to error accumulation [Konevcny et al., 2015]
® But can it work for variance-reduced algorithms?

Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
Several variants since then, active area of research
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Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term

But acceleration has not been achieved for classical SGD

Indeed, momentum SGD is prone to error accumulation [Konevcny et al., 2015]
® But can it work for variance-reduced algorithms?

Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
Several variants since then, active area of research

Algorithm Oracle Complexity Storage
GD N x L < log(y) d
Accelerated GD N x ;% x log (%) d
SGD 1 % X % d
L-SVRG max{ L X og(h) | d
Accelerated SVRG | (N + /%) x 1og(l)| 4
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Accelerated Variants: Smooth + Convex

Algorithm Oracle Complexity

GD N x L x

Accelerated GD N x VL x ﬁ
1

62

1

€

SGD 1 x L X
SAGA (N + L) X
SVRG+ Nlog (%) + £

Accelerated SVRG N log (%) 4 ¥
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Non-Convex Finite Sum: SPIDER

e Moderately large N < e 2
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Non-Convex Finite Sum: SPIDER

e Moderately large N < e 2

Algorithm Oracle Complexity
GD N x e
SGD 1 X e 2
SVRG/SAGA N3 % !
SPIDER/SPIDERBoost | N*/2  x ¢!

¢ SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in
terms of NV and €

® Open problem: Adaptive step-size variant of SPIDER?
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Non-Convex Online: STORM

® SAGA/SVRG not meant for large N
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Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

e SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

1

gradients every ¢ samples: mega batches hard to tune

® STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop
Algorithm Oracle Complexity
SGD 2
SVRG+ e%/3
SPIDER/SPIDERBoost e 3/2
STORM e 3/2

® Open problem: can STORM to handle X, regularizers, etc?
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Distributed Setting

Consider the problem

Data points {¢¥} | available only at k-th node

Central server aids in parallelizing: K nodes can offer K-fold speedup in
wall-clock time
State-of-the-art: Parallel Restarted SPIDER matches centralized O(e=3/2) for

online non-convex

Open problems: Distributed version of STORM? Accelerated variants?
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Open Problem: Decentralized Setting

® Again consider the problem
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Open Problem: Decentralized Setting

® Again consider the problem

No central server, only communication between peers is allowed

All existing approaches are either suboptimal or cannot handle X

® For non-convex, optimal O(¢~%/2) achieved in [Sun et al., 2019)

Open problem: can accelerated rates be obtained for convex decentralized case?
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High-dimensional problems: large d
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® When d is large, accessing VF(x) becomes difficult
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When d is large, accessing VF'(x) becomes difficult
E.g.: in matrix completion, VF(X) € R™*" may be unwieldy (d = mn)
But a few coordinates of VF(X) may be available

Motivates coordinate descent and sketched gradient methods
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@ High-dimensional problems: large d

Gradient sketching
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Sketched Gradient Descent

e Consider recently proposed SEGA [Hanzely et al., 2018]
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Sketched Gradient Descent

Consider recently proposed SEGA [Hanzely et al., 2018]
® Assumes availability of PV F(x) where P € RP*? where p < d

We look at the special case of p =1 and
P=e/=100 ... 1 ... 00

where i, is randomly selected from {1,..., N}

Sketched gradient is not an unbiased estimator!

82



SEGA: single coordinate update

® Unbiased gradient estimate must be maintained
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® Starting with h; = 0, we have

[VE); 7=

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it
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SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

® Starting with h; = 0, we have

[VE(x¢)]; j=1i

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it

® Maintain two d x 1 vectors, but update only 1 coordinate at a time

83



SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

® Starting with h; = 0, we have

[VE); 7=

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it

® Maintain two d x 1 vectors, but update only 1 coordinate at a time

® Can we get GD-like performance with such sporadic updates?
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SEGA: Unbiased Gradient Estimate

® | et us write in compact form:

ht_|_1 = ht + eitQ(VF(Xt) — ht)
g = h; + de;, (VF(x;) — hy)

where ® denotes element-wise product
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® | et us write in compact form:

ht_|_1 = ht + eitG(VF(Xt) — ht)
g = h; + de;, O(VF(x;) — hy)

where ® denotes element-wise product

1
® Note that E[e;,| = 7
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SEGA: Unbiased Gradient Estimate

® | et us write in compact form:

ht_|_1 = ht + eitG(VF(Xt) — ht)
g = h; + de;, O(VF(x;) — hy)

where ® denotes element-wise product

1
® Note that E[e;,| = 7

® Unbiased gradient:

E;, [gt] = hy + dE;, [e;,] © (VF(xt) — ht) = VF(xy)
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SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

g: = d(e;, © VF(x¢))—de;, © hy + E;, [de;, © hy]
= X + Y - E’ff [Y}
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SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

gt — d(eit ® VF(Xt))—deit ®h + E,j, [de,,-, ® hf}

= X + Y - Eif [Y}

Ei, |lgil’] < 2%, |llei, © VF(x)|?| + 24K, [llew, © h?]
= 2| VF()|’ + 2d|h?
< 4dLDp (x4, x*) +  2do?

L-smoothness
& IVF(x;) — VE(xY)|? <
F(x) — F(x*) = Dp(x¢,x")
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SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

g = d(e;, © VF(x¢))—de;, ® hy + E;, [de;, © hy]

= X + Y - EY} [Y}

Ei, |lgil’] < 2%, |llei, © VF(x)|?| + 24K, [llew, © h?]
= 2| VF()|’ + 2d|h?
< 4dLDp (x4, x*) +  2do?

A:QdL,B:2dJ
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SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
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— [H —e;€;, hH—eZte VF(xt)H ]
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Ei, [071] = B, [IIeal] = i, [ + es, © (VF(x) — o)

=, [H —e;,€ Zt)ht+ezte VF(xy H ]

~ B [ e | + i il © (VRG]

T T
Tt [(I elten)elteu} =

E;
T T T
E;, [eLt ,f} —E;, [eiteiteiteit} =0
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SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [021] = Ei, |IBerl®] = i, [Ihe + e;, © (VF(x:) — bo)l?]
=, [H —e;€e Zt)ht+ezte VF(x; H ]
T 2 2
Ei |[[@- eqeDbe|| | +Es, [lle:, © (VF(x)I?]

= (1-3) B [ima?] + J1vF G2

(1 ) LDF(Xta x")

L-smoothness
o IVF(x:)||* < Dp(xq, x*) J
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SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [021] = Ei, |IBerl®] = i, [Ihe + e;, © (VF(x:) — bo)l?]
=, [H —e;€e Zt)ht+ezte VF(x; H ]
T 2 2
E, |[|@- e@-temhtH +E;, [lei, © (VF(x2))]]

:(1 ) [Ime)?] 4|va,)“
)7

1
S (1 g Oy + 7DF Xta )
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SEGA Summary

® GD uses d gradient entries per iteration
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SEGA Summary

GD uses d gradient entries per iteration

SEGA uses 1 gradient entry per iteration

Equivalently, GD incurs dx per iteration cost

Define oracle complexity = dx number of gradients required to achieve e-accuracy

Algorithm Oracle Complexity Per-iteration cost
GD d x L x log(y) d
SEGA d x L x log(7) 1

SEGA is competitive with GD even while looking at one entry at a time!
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@ High-dimensional problems: large d

Hogwild!
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Large N and d

® large N = cannot compute even one entry exactly
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Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe
. T2 | M 2 K 2
r1111711:1t1||Z7LR HFJF§||LHF+§HR”F

where L € RY"*7 and R € RNex"
® |Low-rank assumption = r < N, N,.
® Number of observations N = N,.N, is extremely large
® Number of variables d = (N, + N,.)r is also very large

e Cannot load the variables or observations into the RAM

89



Curse of Parallelization: Beyond Oracle Complexity

® SGD is inherently serial
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Consider system with m cores or m distributed servers
2
0 . g
SGD achives € accuracy in O(—) oracle calls
€

® To use multi-core systems, one must parallelize, e.g., using minibatch
n
m-SGD Xt-l—l = Xt — E Z Vf(Xt,gj)
JEL:

where m = |Z;| stochastic gradients are computed in parallel
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Curse of Parallelization: Beyond Oracle Complexity

SGD is inherently serial

Consider system with m cores or m distributed servers
2
0 . g
SGD achives € accuracy in O(—) oracle calls
€

® To use multi-core systems, one must parallelize, e.g., using minibatch
n
m-SGD Xt-l—l = Xt — E Z Vf(Xt,gj)
JEL:

where m = |Z;| stochastic gradients are computed in parallel

What is the wall-clock time?
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Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
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Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)
m-SGD: Total wall-clock time = (t, + (m + 1)t,.) x 0 /me =~ O(a>/¢)

® Gains due to parallelization offset by the limited memory throughput
® Synchronization requirement cause idling of cores

® Memory is locked while being written
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Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]

x* = arg m}in F(x) := %Z f(x,&)

where & C {1,...,n} is an hyperedge
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Sparse Problem Structure

® Consider the problem [Recht et al., 2011]

N
x* :argmlnF Z x,&;)
where & C {1,...,n} is an hyperedge
® Eg., & =1{1,3,4} and f(x,&) depends on z1, z3, x4
® Sparsity: |&] < d
X FGED f(.862)
6D X2
£ w
fCo8n) T
Xa—1
Xq G 4éN)

Figure 3: (a) Bipartite graph (b) conflict graph representation
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Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]
| X
* o . .
=g £ () = 0 30569
1=

where & C {1,...,n} is an hyperedge
E'g'v é-’L = {]‘7374} and f(X’é-’L) depends on xlr xS, ./E4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;
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where & C {1,...,n} is an hyperedge
E.g., & ={1,3,4} and f(x,&;) depends on 1, x3, x4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;
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Sparse Problem Structure

Consider the problem [Recht et al., 2011]

x* = arg m}in F(x) := %Z f(x,&)

where & C {1,...,n} is an hyperedge
E.g., & ={1,3,4} and f(x,&;) depends on 1, x3, x4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;

So only a few entries of V f(x,&;) are non-zero
Indeed, [Vf(x,&)]j =0 for all j ¢ fz

92
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Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:
® reads x from the memory;
® evaluates Vf(x,§);
® updates x; and
® writes X to memory one entry at a time
without synchronizing with other cores
® This will lead to inconsistent reads and overwrites: recipe for disaster?
e Key idea: collisions rare if £ N &; = 0 with high probability
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Hogwild Algorithm

® Define [x]¢ € R¥1 to contain only those entries that are in £, i.e.,

0 j¢¢
zj je&

(X]e); =
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Hogwild Algorithm

® Define [x]¢ € R¥1 to contain only those entries that are in £, i.e.,

oy =1° 7%¢

zj jEE&

® The full algorithm takes the form:

Algorithm 3 Hogwild! (at each core, in parallel)

1: repeat

2 Sample an hyperedge &

3 Let [X] = an inconsistent read of [x],
4 Evaluate [u], = —nV f([x]¢, §)

5: for v € £ do:

6 T8y = BBy = Uy

7 end for

8:

until number of edges < T o




Perturbed SGD

e Cannot write Hogwild in classical SGD form

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, u-convex functions f, perturbed SGD satisfies

Ser1 < (L= np)de + nPE[||V £ (e, &)%) + 2nuE[|%: — x¢]|%] + 2nE[(%e — %, V f (x¢, &)}
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Perturbed SGD

e Cannot write Hogwild in classical SGD form

® |nstead consider perturbed SGD with some random variable &,

Xi+1 = Xt — va(f% 5t)

where X; = x; + n; with noise n; independent of &

® Defining &; := E[||x; — x*||], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, u-convex functions f, perturbed SGD satisfies

Ser1 < (L= np)de + nPE[||V £ (e, &)%) + 2nuE[|%: — x¢]|%] + 2nE[(%e — %, V f (x¢, &)}
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Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E ]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt, )]

Proof: Expand the optimality gap

1 = X1 = [l =% = 0V f (e, &)
= |t = x*1* = 20(&e = X%, Vf (Re, &) + 17 |V f (R E)II° + 20(Re — x40, V f (R, &)
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Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E ]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt, )]

Proof: Expand the optimality gap and add-subtract (x¢, V f(%¢,&;))

xe1 — xM|* = |lxe —x* =V f (X, &)
= |lxe = x*||” — 2n(&ke — x*, VI (%, &)) + 0?1V f (e, &)|17 + 20(ke — %1, VF (Rt &)
Eufllxer1 — x*)1%] = llx: — x*||* — 2n(& — x*, VF (%)) + n* |V f %z, &)1

+ 2nE(x; — x4, V f (X4, &)
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Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E ]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt, )]

Proof: Expand the optimality gap and add-subtract (x¢, V f(%¢,&;))

lxer1 — ¥ = llxe —x* = nV £ (R, &)l
= |lx¢ — x| — 2n(%e — X*, V£ (%, &) + n? IV f (e, €)% + 20(Re — %1, Vf (R, &))
Eefllxer1 — x*|%] = % — x*[|” = 2n(%e — x*, VF (%)) + 0° |V £ (%2, &)

+ 2nE(Xs — x¢, V f(Xt,62))

Lemma follows from using u-strong convexity and triangle inequality:
(ke — x* VF (%)) > p[|%e — x*|* > % s = x*[1% = o [l %e = 5]
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Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge
® | et X; be the contents before ¢-th read

® Also, recall that [x]& is an inconsistent read, and define full vector x;:

%] [X¢]y v € & — these are changed
Xtlo =
: [X¢]y v & & — these remain same as before the read

® x; independent of & (can be relaxed)
® Bounded gradients: || f(x,£)|| < M (can be relaxed)
o Key idea: after T" updates are written to the memory:

xr = x1 — NV f(X1,81) —nVf(X2,§2) — ... =V f(Xr-1,ér-1)

or

Xep1 =X — NV f(X¢, &)
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Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

Consider, for instance, times ¢ and j:
e ifi<jand §&NE =0, Vf(xi,&) written before X, read: contribution of
V f(%i,&;) included into X; and x;
® Ifi>jand & NE =0, then neither X; nor x; contain any contribution of
V(% &)
Edges & N¢; =0if ‘Z—j| >T
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Hogwild: modeling inconsistent reads

Let S! be diagonal matrix with entries in {—1,0, 1}

Define conflicting edges: Z, :={t —7,t — 7+ 1,...t = 1,t+1,....t + 7}

Then, all possible update orders can be written as

X — X = n Z vaf(fcw §L)

LEL

Models all patterns of possibly partial updates while &; is being processed
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Hogwild Analysis

Lemma
The following bounds hold:

A
E[|[%: — x:|%] < n*M (27 + 872d>

. . A
E[(%; — x4, V f(X¢, e1))] < 477M275

We use ||V f(%,&)|| < M

E[(%; —%;, V(% &) =0 Y B[SV (X, &), VI (e, &)

LET:
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Hogwild Analysis

Lemma
The following bounds hold:

A
E[|%: — x¢]|*] < n*M (27 + 872d>

) R A
EKXt — x4, V (X4, et)ﬂ < 477M27'*

d
. 2A
We use ||V f(%¢,&)|| <M and Pr(§,N¢& #0) = i
E[(%: — xt, V.f (X, &) =0 Y B[(SIVF (%, ), VI (%t )]
LE€T:
<nM?Y Prig.né # 0]
L2A

< apM?r==
< 2pMr—
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Hogwild Analysis

Since ||Sul|, < |lul], it holds that

E[ll%e — xel|"] = °E[ll ) _ SIVf (%, &)%)

LET:
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LEL: L#K
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Hogwild Analysis

Since ||Sul|, < ||u|] it holds that

E[ll%e — xel|"] = °E[ll ) _ SIVf (%, &)%)

LET

=12 Y E|SIVFG, &) + 12 Y E[SIVF (%), SLV £ (Re, €))]

LEL: L#K

< n2ZE||Vf %, )12+ 77 ) BV G, ) IV F Rey &) Le, g, 20]
LF#R

< P M2(271 + 47%Pr€, N & # 0)) = 20 M27(1 4 27(2A/d))
Substituting all bounds,
Sip1 < (1 —np)ds + > M>Cy
where C; = 1+ 87A/d + dnut + 16num?A/d.
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Hogwild Analysis

Since ||Sul|, < |lul], it holds that

E[ll%e — xel|"] = °E[ll ) _ SIVf (%, &)%)

LET
=12 Y E|SIVF(x., )|+ ;EKSEW(&L, £),SEV f (R, £x))]
LET: LE£RK
<Y BV QP+ 17 Y BV (K IV F Ry )l L, e, 0]
2 LF#R

<PPM? (21 4+ 472Pr €, N & # 0) = 202 M2 (1 4 27(2A/d))
Substituting all bounds,
5t+1 < (1 — T]M)(St + 772MQC1

where C; = 1+ 87A/d + dnut + 16num?A/d.

Yields O( L

— ) oracle complexity (same as SGD) provided 7 is not too large
e
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State-of-the-art for high-dimensional

® Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!
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State-of-the-art for high-dimensional

Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

® Extensions to non-convex settings with more realistic assumptions
[Cannelli et al., 2019]

® Very large delays [Zhou et al., 2018]

Proximal variants [Zhu et al., 2018]

® Decentralized variants? Skewed sparsity profile?
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Conclusion J
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Oracle complexity results for different SGD variants

® |ntuition regarding variance reduction and coordinate descent

When to apply which version?

Unified and simplified proofs (extend to non-strongly convex settings also)

State-of-the-art and open problems
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