
SGD and Friends

How to solve large-scale optimization problems?

Ketan Rajawat

February 24, 2020

Indian Institute of Technology Kanpur

1

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion

2

Context

3

Outline

1 Context

Problem Formulation: Online and Finite Sum

Examples

State-of-the-art and Oracle Complexity

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
4

Problem Formulation

Consider the optimization problem:

min
x∈X

F (x) :=
1

N

N∑
i=1

f(x, ξi) (P)

• X ⊆ Rd where d is problem dimension

• ξi indexes the data points/observations/samples

•

N

is the size of data set

5

Problem Formulation

Consider the optimization problem:

min
x∈X

F (x) :=
1

N

N∑
i=1

f(x, ξi) (P)

• X ⊆ Rd where d is problem dimension

• ξi indexes the data points/observations/samples

•

N

is the size of data set

5

Problem Formulation

Consider the optimization problem:

min
x∈X

F (x) :=
1

N

N∑
i=1

f(x, ξi) (P)

• X ⊆ Rd where d is problem dimension

• ξi indexes the data points/observations/samples

•

N

is the size of data set

5

Problem Formulation

Consider the optimization problem:

min
x∈X

F (x) :=
1

N

N∑
i=1

f(x, ξi) (P)

• X ⊆ Rd where d is problem dimension

• ξi indexes the data points/observations/samples

• N is the size of data set

5

Variants

• Online optimization or N →∞

min
x∈X

F (x) := Eξ [f(x, ξ)]

• Use a regularizer h

min
x∈X

R(x) := F (x) +

h(x)

• Distributed/decentralized setting with K nodes

min
x∈X

K∑
k=1

Rk(x)

6

Variants

• Online optimization or N →∞

min
x∈X

F (x) := Eξ [f(x, ξ)]

• Use a regularizer h

min
x∈X

R(x) := F (x) + h(x)

• Distributed/decentralized setting with K nodes

min
x∈X

K∑
k=1

Rk(x)

6

Variants

• Online optimization or N →∞

min
x∈X

F (x) := Eξ [f(x, ξ)]

• Use a regularizer h

min
x∈X

R(x) := F (x) + h(x)

• Distributed/decentralized setting with K nodes

min
x∈X

K∑
k=1

Rk(x)

6

Challenges of Big Data

• Large dimension d

• Hessian inverse [∇2F (x)]−1 requires O(d3) computations
• Approximate Hessian inverse still requires O(d2) computations, e.g., BFGS
• Very large d: must store x on the disk instead of RAM, write operation is bottleneck

• Large dataset size

N

• Even calculating the gradient ∇F (x) at every iteration impractical
• Cannot store entire data on a single machine
• Read/write operations become the bottleneck

• Ideally complexity should be O(dN)

7

Challenges of Big Data

• Large dimension d

• Hessian inverse [∇2F (x)]−1 requires O(d3) computations
• Approximate Hessian inverse still requires O(d2) computations, e.g., BFGS
• Very large d: must store x on the disk instead of RAM, write operation is bottleneck

• Large dataset size N

• Even calculating the gradient ∇F (x) at every iteration impractical
• Cannot store entire data on a single machine
• Read/write operations become the bottleneck

• Ideally complexity should be O(dN)

7

Challenges of Big Data

• Large dimension d

• Hessian inverse [∇2F (x)]−1 requires O(d3) computations
• Approximate Hessian inverse still requires O(d2) computations, e.g., BFGS
• Very large d: must store x on the disk instead of RAM, write operation is bottleneck

• Large dataset size N

• Even calculating the gradient ∇F (x) at every iteration impractical
• Cannot store entire data on a single machine
• Read/write operations become the bottleneck

• Ideally complexity should be O(dN)

7

Outline

1 Context

Problem Formulation: Online and Finite Sum

Examples

State-of-the-art and Oracle Complexity

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
8

Example: Lasso Regression

Predictors for breast

cancer selected via

LASSO regression

[Wang et al., 2016]

9

Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}

• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity

10

Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}
• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity

10

Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}
• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity

10

Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}
• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity

10

Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}
• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity

10

Example: Visual Object Recognition

CIFAR-10 dataset

contains 60000 labeled

images of 10 objects

[Krizhevsky, 2009]

11

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(

NN

(ai,x), bi)

• Here,

NN

(ai,x) is a non-linear function of x, and

• structure of

NN

() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here,

NN

(ai,x) is a non-linear function of x, and

• structure of

NN

() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of

NN

() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of NN() is defined by the neural network

• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of NN() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of NN() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of NN() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing NN

• Optimization community focuses on solving (GD) for general f

12

Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(NN(ai,x), bi)

• Here, NN(ai,x) is a non-linear function of x, and

• structure of NN() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing NN

• Optimization community focuses on solving (GD) for general f

12

Example: Recommender Systems

13

Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N

14

Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N

14

Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N

14

Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N

14

Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N

14

Outline

1 Context

Problem Formulation: Online and Finite Sum

Examples

State-of-the-art and Oracle Complexity

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
15

How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured

16

How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured

16

How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured

16

How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured

16

How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured

16

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)

17

State-of-the-art in SGD

• New avenues for applying SGD emerge every year

• Several variants of SGD are proposed every month

• Papers analyzing performance of these variants come up everyday

• Difficult to consolidate and maintain perspective

18

State-of-the-art in SGD

• New avenues for applying SGD emerge every year

• Several variants of SGD are proposed every month

• Papers analyzing performance of these variants come up everyday

• Difficult to consolidate and maintain perspective

18

State-of-the-art in SGD

• New avenues for applying SGD emerge every year

• Several variants of SGD are proposed every month

• Papers analyzing performance of these variants come up everyday

• Difficult to consolidate and maintain perspective

18

State-of-the-art in SGD

• New avenues for applying SGD emerge every year

• Several variants of SGD are proposed every month

• Papers analyzing performance of these variants come up everyday

• Difficult to consolidate and maintain perspective

18

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19

References

• Key reference text: [Beck, 2017]

• Introductory (deterministic): [Vandenberghe, 2019]

• [Bubeck et al., 2015] is good introduction to the topic

• Related course lecture notes: [Saunders, 2019, Chen, 2019]

• Sebastien Bubeck’s blog: [Bubeck, 2019]

• This tutorial is an amalgamation of [Gorbunov et al., 2019], [Bottou et al., 2018],

and [Recht et al., 2011]

• Inspired from the tutorial: https://www.youtube.com/watch?v=a05S0kL5u30

20

https://www.youtube.com/watch?v=a05S0kL5u30

Background

21

Outline

1 Context

2 Background

Convexity

Smoothness

Subgradients, projection, and proximal operators

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
22

Convex Functions: Zeroth Order Condition

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f(θx + (1− θ)y)

θf(x) + (1− θ)f(y)

x

f
(x

)

23

Convex Functions: First and Second Order Conditions

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉

Alternatively: eigenvalues of (∇2F (x)) ≥ 0

f(y)

f(x) + 〈∇
f(x),y

− x〉

x

x

f
(x

)

24

Strongly Convex Functions

Strongly Convex

25

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is µ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2

where µ > 0. Alternatively, eigenvalues of (∇2F (x)) ≥ µ

`2-norm square example

The function f(x) =
1

2
‖x‖2 is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

R(x) =
1

N

N∑
i=1

(a>i x− bi)2 + λ ‖x‖1.

Show that for this case µ = smallest eigenvalue of
1

N

N∑
i=1

aia
>
i

26

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is µ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2

where µ > 0. Alternatively, eigenvalues of (∇2F (x)) ≥ µ

`2-norm square example

The function f(x) =
1

2
‖x‖2 is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

R(x) =
1

N

N∑
i=1

(a>i x− bi)2 + λ ‖x‖1.

Show that for this case µ = smallest eigenvalue of
1

N

N∑
i=1

aia
>
i

26

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is µ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2

where µ > 0. Alternatively, eigenvalues of (∇2F (x)) ≥ µ

`2-norm square example

The function f(x) =
1

2
‖x‖2 is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

R(x) =
1

N

N∑
i=1

(a>i x− bi)2 + λ ‖x‖1.

Show that for this case µ = smallest eigenvalue of
1

N

N∑
i=1

aia
>
i

26

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is µ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2

where µ > 0. Alternatively, eigenvalues of (∇2F (x)) ≥ µ

`2-norm square example

The function f(x) =
1

2
‖x‖2 is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

R(x) =
1

N

N∑
i=1

(a>i x− bi)2 + λ ‖x‖1.

Show that for this case µ = smallest eigenvalue of
1

N

N∑
i=1

aia
>
i 26

Outline

1 Context

2 Background

Convexity

Smoothness

Subgradients, projection, and proximal operators

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
27

Smooth Functions

Smooth

28

Smooth Functions: Quadratic Upper Bound

Definition

A function F is L-smooth

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖x− y‖2

Alternatively: eigenvalues of (∇2F (x)) ≤ L

29

Bregman Divergence

• Bregman divergence over a function F is defined as

DF (x,y) = F (y)− F (x)− 〈∇F (x),y − x〉

• Bregman divergence is not symmetric (and not a metric) but satisfies

µ

2
‖x− y‖2 ≤DF (x,y) ≤

L

2
‖x− y‖2

1

2

L

‖∇F (x)−∇F (y)‖2 ≤DF (x,y) ≤ 1

2µ
‖∇F (x)−∇F (y)‖2

30

Bregman Divergence

• Bregman divergence over a function F is defined as

DF (x,y) = F (y)− F (x)− 〈∇F (x),y − x〉

• Bregman divergence is not symmetric (and not a metric) but satisfies

µ

2
‖x− y‖2 ≤DF (x,y) ≤ L

2
‖x− y‖2

1

2

L

‖∇F (x)−∇F (y)‖2 ≤DF (x,y) ≤ 1

2µ
‖∇F (x)−∇F (y)‖2

30

Bregman Divergence

• Bregman divergence over a function F is defined as

DF (x,y) = F (y)− F (x)− 〈∇F (x),y − x〉

• Bregman divergence is not symmetric (and not a metric) but satisfies

µ

2
‖x− y‖2 ≤DF (x,y) ≤ L

2
‖x− y‖2

1

2L
‖∇F (x)−∇F (y)‖2 ≤DF (x,y) ≤ 1

2µ
‖∇F (x)−∇F (y)‖2

30

Outline

1 Context

2 Background

Convexity

Smoothness

Subgradients, projection, and proximal operators

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion
31

Non-smooth convex functions

• If h is non-smooth convex, may still define subgradient v(x) ∈ ∂h(x)

• Satisfies first order convexity condition as usual

f(y) ≥ f(x) + 〈v(x),y − x〉

• Optimality condition for x? = arg min
x

f(x):

v(x?) = 0 ∈ ∂h(x?)

32

Non-smooth convex functions

• If h is non-smooth convex, may still define subgradient v(x) ∈ ∂h(x)

• Satisfies first order convexity condition as usual

f(y) ≥ f(x) + 〈v(x),y − x〉

• Optimality condition for x? = arg min
x

f(x):

v(x?) = 0 ∈ ∂h(x?)

32

Non-smooth convex functions

• If h is non-smooth convex, may still define subgradient v(x) ∈ ∂h(x)

• Satisfies first order convexity condition as usual

f(y) ≥ f(x) + 〈v(x),y − x〉

• Optimality condition for x? = arg min
x

f(x):

v(x?) = 0 ∈ ∂h(x?)

32

Projection Operator

• Define the projection over a set X as

PX (x) = arg min
y∈X

1

2
‖y − x‖2

• Equivalent formulation

PX (x) = arg min
y

1

2
‖y − x‖2 + 11X (x)

where the indicator function is defined as

11X (x) =

0 x ∈ X

∞ x /∈ X

33

Projection Operator

• Define the projection over a set X as

PX (x) = arg min
y∈X

1

2
‖y − x‖2

• Equivalent formulation

PX (x) = arg min
y

1

2
‖y − x‖2 + 11X (x)

where the indicator function is defined as

11X (x) =

0 x ∈ X

∞ x /∈ X

33

Proximal Operator

• Proximal operator generalizes projection

proxh(x) = y? = arg min
y

1

2
‖y − x‖2 + h(x)

• Useful property: differentiate and equate to zero

y? − x + v(y?) = 0

where y? = proxh(x) and v(y?) ∈ ∂h(y?)

34

Proximal Operator

• Proximal operator generalizes projection

proxh(x) = y? = arg min
y

1

2
‖y − x‖2 + h(x)

• Useful property: differentiate and equate to zero

y? − x + v(y?) = 0

where y? = proxh(x) and v(y?) ∈ ∂h(y?)

34

Vanilla Stochastic Gradient Descent: Large N

35

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent

Performance of Stochastic Grandient Descent

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion

36

Gradient Descent vs. Stochastic Gradient Descent

• Gradient descent for solving (P)

xt+1 = PX

(
xt −

η

N

N∑
i=1

∇f(xt, ξi)

)
• N oracle calls per iteration

• Stochastic gradient descent for solving (P)

xt+1 = PX (xt − η∇f(xt, ξit))

where it ∈ {1, . . . , N} is a random number.

• Descent direction on average: expectation w.r.t. it

Eit [∇f(xt, ξit)] =
1

N

N∑
i=1

f(xt, ξi) = ∇F (xt)

37

Gradient Descent vs. Stochastic Gradient Descent

• Gradient descent for solving (P)

xt+1 = PX

(
xt −

η

N

N∑
i=1

∇f(xt, ξi)

)
• N oracle calls per iteration

• Stochastic gradient descent for solving (P)

xt+1 = PX (xt − η∇f(xt, ξit))

where it ∈ {1, . . . , N} is a random number.

• Descent direction on average: expectation w.r.t. it

Eit [∇f(xt, ξit)] =
1

N

N∑
i=1

f(xt, ξi) = ∇F (xt)

37

Gradient Descent vs. Stochastic Gradient Descent

• Gradient descent for solving (P)

xt+1 = PX

(
xt −

η

N

N∑
i=1

∇f(xt, ξi)

)
• N oracle calls per iteration

• Stochastic gradient descent for solving (P)

xt+1 = PX (xt − η∇f(xt, ξit))

where it ∈ {1, . . . , N} is a random number.

• Descent direction on average: expectation w.r.t. it

Eit [∇f(xt, ξit)] =
1

N

N∑
i=1

f(xt, ξi) = ∇F (xt)

37

Intuition

• SGD more efficient at accessing data

• handles redundancy in dataset better

38

Intuition

• SGD more efficient at accessing data

• handles redundancy in dataset better

38

Intuition

• SGD more efficient

at accessing data

• handles redundancy

in dataset better

• consider lasso

example: features

ai ∈
span(a(1),a(2),a(3))

38

History of SGD

• Given (X,Y) observations, let Φ(X) be a transformation

• SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient

LMS (Widrow-Hoff’60)
1

2
(Y − Φ(X)>x)2 (Φ(X)>x− Y)Φ(X)

Perceptron (Rosenblatt’57) [−Y〈Φ(X),x〉]+ −YΦ(X)11Y〈Φ(X),x〉≤0

SVM (Cortes-Vapnik’95)
λ

2
‖x‖2 + [1− Y〈Φ(X),x〉]+ λx− YΦ(X)11Y〈Φ(X),x〉≤1

39

History of SGD

• Given (X,Y) observations, let Φ(X) be a transformation

• SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient

LMS (Widrow-Hoff’60)
1

2
(Y − Φ(X)>x)2 (Φ(X)>x− Y)Φ(X)

Perceptron (Rosenblatt’57) [−Y〈Φ(X),x〉]+ −YΦ(X)11Y〈Φ(X),x〉≤0

SVM (Cortes-Vapnik’95)
λ

2
‖x‖2 + [1− Y〈Φ(X),x〉]+ λx− YΦ(X)11Y〈Φ(X),x〉≤1

39

History of SGD

• Given (X,Y) observations, let Φ(X) be a transformation

• SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient

LMS (Widrow-Hoff’60)
1

2
(Y − Φ(X)>x)2 (Φ(X)>x− Y)Φ(X)

Perceptron (Rosenblatt’57) [−Y〈Φ(X),x〉]+ −YΦ(X)11Y〈Φ(X),x〉≤0

SVM (Cortes-Vapnik’95)
λ

2
‖x‖2 + [1− Y〈Φ(X),x〉]+ λx− YΦ(X)11Y〈Φ(X),x〉≤1

39

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent

Performance of Stochastic Grandient Descent

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

6 Conclusion

40

Assumptions

L-smoothness

DF (x,y) ≤ L

2
‖x− y‖2

µ-convexity

DF (x,y) ≥ µ

2
‖x− y‖2

Bounded Variance

Eit
[
‖∇f(x, ξit)‖

2
]
≤ σ2 + c ‖∇F (x)‖2

⇒ Eit
[
‖∇f(x?, ξit)‖

2
]
≤ σ2

provided ∇F (x?) = 0 and c ≥ 1.

σ2 is the inherent data variance

41

Assumptions

L-smoothness

DF (x,y) ≤ L

2
‖x− y‖2

µ-convexity

DF (x,y) ≥ µ

2
‖x− y‖2

Bounded Variance

Eit
[
‖∇f(x, ξit)‖

2
]
≤ σ2 + c ‖∇F (x)‖2

⇒ Eit
[
‖∇f(x?, ξit)‖

2
]
≤ σ2

provided ∇F (x?) = 0 and c ≥ 1.

σ2 is the inherent data variance

41

Assumptions

L-smoothness

DF (x,y) ≤ L

2
‖x− y‖2

µ-convexity

DF (x,y) ≥ µ

2
‖x− y‖2

Bounded Variance

Eit
[
‖∇f(x, ξit)‖

2
]
≤ σ2 + c ‖∇F (x)‖2

⇒ Eit
[
‖∇f(x?, ξit)‖

2
]
≤ σ2

provided ∇F (x?) = 0 and c ≥ 1.

σ2 is the inherent data variance

41

Strong Convexity and Smoothness: Condition Number

42

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

For L-smooth, µ-convex functions, SGD incurs oracle complexity of O
(
L

µε

)
.

For simplicity, consider unconstrained version: xt+1 − xt = η∇f(xt, ξit)

Proof: Step 1. Quadratic upper bound (L-smootheness):

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= F (xt)− η〈∇F (xt),∇f(xt, ξit)〉+
η2L

2
‖∇f(xt, ξit)‖

2

43

Update Equation

xt+1 − xt = η∇f(xt, ξit)

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

For L-smooth, µ-convex functions, SGD incurs oracle complexity of O
(
L

µε

)
.

For simplicity, consider unconstrained version: xt+1 − xt = η∇f(xt, ξit)

Proof: Step 1. Quadratic upper bound (L-smootheness):

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= F (xt)− η〈∇F (xt),∇f(xt, ξit)〉+
η2L

2
‖∇f(xt, ξit)‖

2

43

Update Equation

xt+1 − xt = η∇f(xt, ξit)

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

For L-smooth, µ-convex functions, SGD incurs oracle complexity of O
(
L

µε

)
.

For simplicity, consider unconstrained version: xt+1 − xt = η∇f(xt, ξit)

Proof: Step 1. Quadratic upper bound (L-smootheness):

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= F (xt)− η〈∇F (xt),∇f(xt, ξit)〉+
η2L

2
‖∇f(xt, ξit)‖

2

43

Update Equation

xt+1 − xt = η∇f(xt, ξit)

SGD: Strongly Convex + Smooth

Step 2. Take expectation

, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1

SGD: Strongly Convex + Smooth

Step 3. Relate ‖∇F (xt)‖2 with optimality gap:

subtract F (x?) , and use strong convexity

Eit [F (xt+1)]−F (x?) ≤ F (xt)−F (x?)− η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ (1−µη)(F (xt)− F (x?)) +
η2σ2L

2

Set ∆t = E[F (xt+1)− F (x?)]

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

45

1

2
‖∇F (xt)‖2 ≥ µ(F (xt)− F (x?))

SGD: Strongly Convex + Smooth

Step 3. Relate ‖∇F (xt)‖2 with optimality gap:

subtract F (x?) , and use strong convexity

Eit [F (xt+1)]−F (x?) ≤ F (xt)−F (x?)− η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ (1−µη)(F (xt)− F (x?)) +
η2σ2L

2

Set ∆t = E[F (xt+1)− F (x?)]

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

45

1

2
‖∇F (xt)‖2 ≥ µ(F (xt)− F (x?))

SGD: Strongly Convex + Smooth

Step 3. Relate ‖∇F (xt)‖2 with optimality gap:

subtract F (x?) , and use strong convexity

Eit [F (xt+1)]−F (x?) ≤ F (xt)−F (x?)− η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ (1−µη)(F (xt)− F (x?)) +
η2σ2L

2

Set ∆t = E[F (xt+1)− F (x?)]

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

45

1

2
‖∇F (xt)‖2 ≥ µ(F (xt)− F (x?))

SGD: Strongly Convex + Smooth

Step 3. Relate ‖∇F (xt)‖2 with optimality gap:

subtract F (x?) , and use strong convexity

Eit [F (xt+1)]−F (x?) ≤ F (xt)−F (x?)− η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ (1−µη)(F (xt)− F (x?)) +
η2σ2L

2

Set ∆t = E[F (xt+1)− F (x?)]

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

45

1

2
‖∇F (xt)‖2 ≥ µ(F (xt)− F (x?))

SGD: Strongly Convex + Smooth

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

Step 4. Obtain final inequality:

Apply recursively over t = 1, . . . , T :

∆T+1 ≤ (1− µη)T∆1 +
η2σ2L

2

1

µη

46

SGD: Strongly Convex + Smooth

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

Step 4. Obtain final inequality:

Apply recursively over t = 1, . . . , T :

∆T+1 ≤ (1− µη)T∆1 +
η2σ2L

2

1

µη

46

SGD: Strongly Convex + Smooth

Final inequality

∆T+1 ≤ (1− µη)T∆1 +
ησ2L

2µ

Step 5. Pick η:

• Equate each term to ε⇒ η = O(
µε

σ2L
) (ignore unimportant constants)

• Solve for T : (1− µη)T = ε and use log(1− µη) ≈ −µη to obtain

T = O
(
σ2L

µε
log

(
1

ε

))
≈ O

(
σ2L

µε

)

47

SGD: Strongly Convex + Smooth

Final inequality

∆T+1 ≤ (1− µη)T∆1 +
ησ2L

2µ

Step 5. Pick η:

• Equate each term to ε⇒ η = O(
µε

σ2L
) (ignore unimportant constants)

• Solve for T : (1− µη)T = ε and use log(1− µη) ≈ −µη to obtain

T = O
(
σ2L

µε
log

(
1

ε

))
≈ O

(
σ2L

µε

)

47

SGD: Strongly Convex + Smooth

Final inequality

∆T+1 ≤ (1− µη)T∆1 +
ησ2L

2µ

Step 5. Pick η:

• Equate each term to ε⇒ η = O(
µε

σ2L
) (ignore unimportant constants)

• Solve for T : (1− µη)T = ε and use log(1− µη) ≈ −µη to obtain

T = O
(
σ2L

µε
log

(
1

ε

))
≈ O

(
σ2L

µε

)

47

Practical Considerations

• With fixed η, SGD converges fast, but slows when optimality gap is O(η)

• Can select a diminishing step-size to obtain slight improvement

• Other approach: half the step-size when progress stalls [Bottou et al., 2018]

48

Practical Considerations

• With fixed η, SGD converges fast, but slows when optimality gap is O(η)

• Can select a diminishing step-size to obtain slight improvement

• Other approach: half the step-size when progress stalls [Bottou et al., 2018]

48

Practical Considerations

• With fixed η, SGD converges fast, but slows when optimality gap is O(η)

• Can select a diminishing step-size to obtain slight improvement

• Other approach: half the step-size when progress stalls [Bottou et al., 2018]

48

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

For L-smooth functions, SGD incurs oracle complexity of O
(
L

ε2

)
.

Proof for unconstrained version: xt+1 − xt = η∇f(xt, ξit).

Recall from L-smoothness and ηLc < 1 (here: ∆t = E[F (xt)]− F (x?) ≥ 0):

∆t+1 ≤ ∆t −
η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ ∆1 −
η

2

T∑
t=1

‖∇F (xt)‖2 +
Tη2σ2L

2

49

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

For L-smooth functions, SGD incurs oracle complexity of O
(
L

ε2

)
.

Proof for unconstrained version: xt+1 − xt = η∇f(xt, ξit).

Recall from L-smoothness and ηLc < 1 (here: ∆t = E[F (xt)]− F (x?) ≥ 0):

∆t+1 ≤ ∆t −
η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ ∆1 −
η

2

T∑
t=1

‖∇F (xt)‖2 +
Tη2σ2L

2

49

SGD: Smooth

• Rearrange to obtain:

min
1≤t≤T

E[‖∇F (xt)‖22] ≤ 1

T

T∑
t=1

E[‖∇F (xt)‖22] ≤ ησ2L+
2∆1

ηT

• Equate each term to ε to obtain η =
ε

σ2L
and

T = O
(
σ2L

ε2

)
oracle calls required to reach close to a first order stationary point

50

SGD: Smooth

• Rearrange to obtain:

min
1≤t≤T

E[‖∇F (xt)‖22] ≤ 1

T

T∑
t=1

E[‖∇F (xt)‖22] ≤ ησ2L+
2∆1

ηT

• Equate each term to ε to obtain η =
ε

σ2L
and

T = O
(
σ2L

ε2

)
oracle calls required to reach close to a first order stationary point

50

Variance-Reduced SGD: Moderate N

51

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε)
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε)
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε)
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε)
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε)
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε)
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52

Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε)
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε)
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52

Speeding up SGD?

GD

SGD

oracle calls

lo
g

(e
xc

es
s

lo
ss

)

53

Speeding up SGD?

GD

SGD

???

oracle calls

lo
g

(e
xc

es
s

lo
ss

)

53

Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi)

(mini-batch)

54

Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi)

(mini-batch)

54

Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi) (mini-batch)

54

Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

of iterations = O(Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

of iterations = O(Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

of iterations = O(Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

of iterations = O(Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

of iterations = O(Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Intuition: Shifted SGD

• Consider the loss functions

φ(x, ξi) = f(x, ξi)−a>i x

so that the overall objective remains the same, i.e.,

Φ(x) := 1
N

N∑
i=1

f(x, ξi)−a>i x = F (x)

provided that
∑
i

ai = 0.

• Note that ∇φ(x, ξi) = ∇f(x, ξi)−ai
• Recall that SGD performance depends on variance at x?

Vit [‖∇f(x?, ξit)‖] ≤ σ2

56

Intuition: Shifted SGD

• Consider the loss functions

φ(x, ξi) = f(x, ξi)−a>i x

so that the overall objective remains the same, i.e.,

Φ(x) := 1
N

N∑
i=1

f(x, ξi)−a>i x = F (x)

provided that
∑
i

ai = 0.

• Note that ∇φ(x, ξi) = ∇f(x, ξi)−ai

• Recall that SGD performance depends on variance at x?

Vit [‖∇f(x?, ξit)‖] ≤ σ2

56

Intuition: Shifted SGD

• Consider the loss functions

φ(x, ξi) = f(x, ξi)−a>i x

so that the overall objective remains the same, i.e.,

Φ(x) := 1
N

N∑
i=1

f(x, ξi)−a>i x = F (x)

provided that
∑
i

ai = 0.

• Note that ∇φ(x, ξi) = ∇f(x, ξi)−ai
• Recall that SGD performance depends on variance at x?

Vit [‖∇f(x?, ξit)‖] ≤ σ2

56

Intuition: Shifted SGD

Shifted gradient

∇φ(x, ξi) = ∇f(x, ξi)−ai

• Goal: select ai so that Vit [∇φ(x?, ξit)] is small

• Hypothetically,

Vit [∇φ(x?, ξit)] = 0

requires

ai = ∇f(x?, ξi)

• Not practical as x? unknown

• Clue: availability of estimates of ∇f(x?, ξi) can help!

57

Intuition: Shifted SGD

Shifted gradient

∇φ(x, ξi) = ∇f(x, ξi)−ai

• Goal: select ai so that Vit [∇φ(x?, ξit)] is small

• Hypothetically, Vit [∇φ(x?, ξit)] = 0 requires

ai = ∇f(x?, ξi)

• Not practical as x? unknown

• Clue: availability of estimates of ∇f(x?, ξi) can help!

57

Intuition: Shifted SGD

Shifted gradient

∇φ(x, ξi) = ∇f(x, ξi)−ai

• Goal: select ai so that Vit [∇φ(x?, ξit)] is small

• Hypothetically, Vit [∇φ(x?, ξit)] = 0 requires

ai = ∇f(x?, ξi)

• Not practical as x? unknown

• Clue: availability of estimates of ∇f(x?, ξi) can help!

57

Intuition: Shifted SGD

Shifted gradient

∇φ(x, ξi) = ∇f(x, ξi)−ai

• Goal: select ai so that Vit [∇φ(x?, ξit)] is small

• Hypothetically, Vit [∇φ(x?, ξit)] = 0 requires

ai = ∇f(x?, ξi)

• Not practical as x? unknown

• Clue: availability of estimates of ∇f(x?, ξi) can help!

57

Unified Theory of Gradient Approximation

• A unified approach to approximating gradients [Gorbunov et al., 2019]

• Suppose the unbiased gradient approximation gt satisfies:

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[σ2
t+1] ≤ (1− ρ)σ2

t + 2CDF (xt,x
?)

where A, B, C, σ2
t , and ρ > 0 are some constants (depend on L, µ, N) and Et[·]

is expectation with respect to the random data index at iteration t

Lemma (Simplified version of [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

58

Unified Theory of Gradient Approximation

• A unified approach to approximating gradients [Gorbunov et al., 2019]

• Suppose the unbiased gradient approximation gt satisfies:

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[σ2
t+1] ≤ (1− ρ)σ2

t + 2CDF (xt,x
?)

where A, B, C, σ2
t , and ρ > 0 are some constants (depend on L, µ, N) and Et[·]

is expectation with respect to the random data index at iteration t

Lemma (Simplified version of [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

58

Unified Theory of Gradient Approximation

• A unified approach to approximating gradients [Gorbunov et al., 2019]

• Suppose the unbiased gradient approximation gt satisfies:

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[σ2
t+1] ≤ (1− ρ)σ2

t + 2CDF (xt,x
?)

where A, B, C, σ2
t , and ρ > 0 are some constants (depend on L, µ, N) and Et[·]

is expectation with respect to the random data index at iteration t

Lemma (Simplified version of [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

58

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

Proof: Step 1: Expand the squares

and use unbiased property Et[gt] = ∇F (xt)

:

‖xt+1 − x?‖2 = ‖xt − x? − ηgt‖2

= ‖xt − x?‖2 − 2η〈xt − x?,gt〉+ η2 ‖gt‖2

⇒ Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

59

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

Proof: Step 1: Expand the squares

and use unbiased property Et[gt] = ∇F (xt)

:

‖xt+1 − x?‖2 = ‖xt − x? − ηgt‖2

= ‖xt − x?‖2 − 2η〈xt − x?,gt〉+ η2 ‖gt‖2

⇒ Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

59

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

Proof: Step 1: Expand the squares and use unbiased property Et[gt] = ∇F (xt):

‖xt+1 − x?‖2 = ‖xt − x? − ηgt‖2

= ‖xt − x?‖2 − 2η〈xt − x?,gt〉+ η2 ‖gt‖2

⇒ Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

59

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (

Aη

− 1)DF (xt,x
?) +

Bη2σ2
t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (

Aη

− 1)DF (xt,x
?) +

Bη2σ2
t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2

+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (Aη − 1)DF (xt,x
?) +Bη2σ2

t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (Aη − 1)DF (xt,x
?) +Bη2σ2

t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (Aη − 1)DF (xt,x
?) +Bη2σ2

t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2

+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (Aη − 1)DF (xt,x
?) +Bη2σ2

t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2

+

η = ρ
Aρ+2BC

Variance Reduced SGD: Proof

Take full expectation

and apply recursively

E[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1] ≤

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
)
E[‖xt − x?‖2 + 2Bη2

ρ σ2
t]

≤
(

1−min{ µρ
Aρ+2BC ,

ρ
2}
)t

E[‖x0 − x?‖2 + 2Bη2

ρ σ2
0]

Equivalently, to get E[‖xT+1 − x?‖2] ≤ ε needs

T =
log
(

1
ε

)
− log

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
) ≈ log

(
1
ε

)
min{ µρ

Aρ+2BC ,
ρ
2}

61

Variance Reduced SGD: Proof

Take full expectation and apply recursively

E[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1] ≤

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
)
E[‖xt − x?‖2 + 2Bη2

ρ σ2
t]

≤
(

1−min{ µρ
Aρ+2BC ,

ρ
2}
)t

E[‖x0 − x?‖2 + 2Bη2

ρ σ2
0]

Equivalently, to get E[‖xT+1 − x?‖2] ≤ ε needs

T =
log
(

1
ε

)
− log

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
) ≈ log

(
1
ε

)
min{ µρ

Aρ+2BC ,
ρ
2}

61

Variance Reduced SGD: Proof

Take full expectation and apply recursively

E[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1] ≤

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
)
E[‖xt − x?‖2 + 2Bη2

ρ σ2
t]

≤
(

1−min{ µρ
Aρ+2BC ,

ρ
2}
)t

E[‖x0 − x?‖2 + 2Bη2

ρ σ2
0]

Equivalently, to get E[‖xT+1 − x?‖2] ≤ ε needs

T =
log
(

1
ε

)
− log

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
) ≈ log

(
1
ε

)
min{ µρ

Aρ+2BC ,
ρ
2}

61

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

SAGA and SVRG

State-of-the-art and Open Problems

5 High-dimensional problems: large d

6 Conclusion
62

SAGA

Pick it at random from {1, 2, . . . , N}

hjt+1 =

hjt j 6= it

∇f(xt, ξit) j = it

gt = hitt+1 − hitt +
1

N

N∑
i=1

hit

h1
t h2

t h3
t hNt

1
N

N∑
i=1

hit

63

SAGA

Pick it at random from {1, 2, . . . , N}

hjt+1 =

hjt j 6= it

∇f(xt, ξit) j = it

gt = hitt+1 − hitt +
1

N

N∑
i=1

hit

h1
t h2

t h3
t hNt

1
N

N∑
i=1

hit

63

SAGA Approximation is Unbiased

Unbiased? Eit [gt] = Eit
[
hitt+1

]
−Eit

[
hitt

]
+ 1

N

N∑
i=1

hit

= ∇F (xt) − 1
N

N∑
i=1

hit + 1
N

N∑
i=1

hit

.

64

Eit [∇f(xt, ξit)] = ∇F (xt)
Eit
[
hitt

]
= 1

N

N∑
i=1

hit

SAGA Approximation is Unbiased

Unbiased?

Eit [gt] = Eit
[
hitt+1

]
−Eit

[
hitt

]
+ 1

N

N∑
i=1

hit

= ∇F (xt)

− 1
N

N∑
i=1

hit + 1
N

N∑
i=1

hit

.

64

Eit [∇f(xt, ξit)] = ∇F (xt)

Eit
[
hitt

]
= 1

N

N∑
i=1

hit

SAGA Approximation is Unbiased

Unbiased?

Eit [gt] = Eit
[
hitt+1

]
−Eit

[
hitt

]
+ 1

N

N∑
i=1

hit

= ∇F (xt) − 1
N

N∑
i=1

hit + 1
N

N∑
i=1

hit

.

64

Eit [∇f(xt, ξit)] = ∇F (xt)

Eit
[
hitt

]
= 1

N

N∑
i=1

hit

SAGA Approximation is Unbiased

Unbiased?

Eit [gt] = Eit
[
hitt+1

]
−Eit

[
hitt

]
+ 1

N

N∑
i=1

hit

= ∇F (xt)

− 1
N

N∑
i=1

hit + 1
N

N∑
i=1

hit

.

64

Eit [∇f(xt, ξit)] = ∇F (xt)
Eit
[
hitt

]
= 1

N

N∑
i=1

hit

SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
(
1− 1

N

)
∇f(xt, ξit) j = it with prob. 1

N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
(
1− 1

N

)
∇f(xt, ξit) j = it with prob. 1

N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
(
1− 1

N

)
∇f(xt, ξit) j = it with prob. 1

N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

SAGA: Summary

Plugging in A = 2L, B = 2, C = 2L
N , and ρ = 1

N (ignoring constants)

O
(

max
{
N, Lµ

}
log
(

1
ε

))

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

Improves over SGD when N is not too large but high storage

67

SAGA: Summary

Plugging in A = 2L, B = 2, C = 2L
N , and ρ = 1

N (ignoring constants)

O
(

max
{
N, Lµ

}
log
(

1
ε

))

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

Improves over SGD when N is not too large but high storage

67

SAGA: Summary

Plugging in A = 2L, B = 2, C = 2L
N , and ρ = 1

N (ignoring constants)

O
(

max
{
N, Lµ

}
log
(

1
ε

))

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

Improves over SGD when N is not too large but high storage

67

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68

Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt)

−∇F (yt) +∇F (yt)

68

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2

Loopless SVRG: σ2
t

Recall that

yt+1 =

yt with prob.
(
1− 1

N

)
xt with prob. 1

N (calculate ∇F (xt)

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

E[‖∇f(yt+1, ξj)−∇f(x?, ξj)‖2]

= 1
N

N∑
j=1

[(
1− 1

N

)
‖∇f(yt, ξj)−∇f(x?, ξj)‖2 + 1

N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2
]

≤
(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

70

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

Loopless SVRG: σ2
t

Recall that

yt+1 =

yt with prob.
(
1− 1

N

)
xt with prob. 1

N (calculate ∇F (xt)

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

E[‖∇f(yt+1, ξj)−∇f(x?, ξj)‖2]

= 1
N

N∑
j=1

[(
1− 1

N

)
‖∇f(yt, ξj)−∇f(x?, ξj)‖2 + 1

N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2
]

≤
(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

70

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

Loopless SVRG: σ2
t

Recall that

yt+1 =

yt with prob.
(
1− 1

N

)
xt with prob. 1

N (calculate ∇F (xt)

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

E[‖∇f(yt+1, ξj)−∇f(x?, ξj)‖2]

= 1
N

N∑
j=1

[(
1− 1

N

)
‖∇f(yt, ξj)−∇f(x?, ξj)‖2 + 1

N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2
]

≤
(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

70

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N

Loopless SVRG: Summary

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Loopless SVRG has almost same number of gradient calculations as SAGA but requires

same storage as SGD

71

Loopless SVRG: Summary

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Loopless SVRG has almost same number of gradient calculations as SAGA but requires

same storage as SGD

71

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

SAGA and SVRG

State-of-the-art and Open Problems

5 High-dimensional problems: large d

6 Conclusion
72

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73

Accelerated Variants: Smooth + Convex

Algorithm Oracle Complexity

GD N × L × 1
ε

Accelerated GD N ×
√
L × 1√

ε

SGD 1 × L × 1
ε2

SAGA (N + L) × 1
ε

SVRG+ N log
(

1
ε

)
+ L

ε

Accelerated SVRG N log
(

1
ε

)
+
√

NL
ε

74

Non-Convex Finite Sum: SPIDER

• Moderately large N ≤ ε−2

Algorithm Oracle Complexity

GD N × ε−1

SGD 1 × ε−2

SVRG/SAGA N2/3 × ε−1

SPIDER/SPIDERBoost N1/2 × ε−1

• SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in

terms of N and ε

• Open problem: Adaptive step-size variant of SPIDER?

75

Non-Convex Finite Sum: SPIDER

• Moderately large N ≤ ε−2

Algorithm Oracle Complexity

GD N × ε−1

SGD 1 × ε−2

SVRG/SAGA N2/3 × ε−1

SPIDER/SPIDERBoost N1/2 × ε−1

• SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in

terms of N and ε

• Open problem: Adaptive step-size variant of SPIDER?

75

Non-Convex Finite Sum: SPIDER

• Moderately large N ≤ ε−2

Algorithm Oracle Complexity

GD N × ε−1

SGD 1 × ε−2

SVRG/SAGA N2/3 × ε−1

SPIDER/SPIDERBoost N1/2 × ε−1

• SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in

terms of N and ε

• Open problem: Adaptive step-size variant of SPIDER?

75

Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?

76

Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?

76

Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?

76

Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?

76

Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?

76

Distributed Setting

• Consider the problem

min
x∈X

∑
k∈V

Fk(x)

• Data points {ξki }Ni=1 available only at k-th node

• Central server aids in parallelizing: K nodes can offer K-fold speedup in

wall-clock time

• State-of-the-art: Parallel Restarted SPIDER matches centralized O(ε−3/2) for

online non-convex

• Open problems: Distributed version of STORM? Accelerated variants?

77

Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X
• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?

78

Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X
• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?

78

Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X

• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?

78

Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X
• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?

78

Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X
• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?

78

High-dimensional problems: large d

79

• When d is large, accessing ∇F (x) becomes difficult

• E.g.: in matrix completion, ∇F (X) ∈ Rm×n may be unwieldy (d = mn)

• But a few coordinates of ∇F (X) may be available

• Motivates coordinate descent and sketched gradient methods

80

• When d is large, accessing ∇F (x) becomes difficult

• E.g.: in matrix completion, ∇F (X) ∈ Rm×n may be unwieldy (d = mn)

• But a few coordinates of ∇F (X) may be available

• Motivates coordinate descent and sketched gradient methods

80

• When d is large, accessing ∇F (x) becomes difficult

• E.g.: in matrix completion, ∇F (X) ∈ Rm×n may be unwieldy (d = mn)

• But a few coordinates of ∇F (X) may be available

• Motivates coordinate descent and sketched gradient methods

80

• When d is large, accessing ∇F (x) becomes difficult

• E.g.: in matrix completion, ∇F (X) ∈ Rm×n may be unwieldy (d = mn)

• But a few coordinates of ∇F (X) may be available

• Motivates coordinate descent and sketched gradient methods

80

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

Gradient sketching

Hogwild!

6 Conclusion
81

Sketched Gradient Descent

• Consider recently proposed SEGA [Hanzely et al., 2018]

• Assumes availability of P∇F (x) where P ∈ Rp×d where p� d

• We look at the special case of p = 1 and

P = e>it =
[
0 0 . . . 1 . . . 0 0

]
where it is randomly selected from {1, . . . , N}
• Sketched gradient is not an unbiased estimator!

82

Sketched Gradient Descent

• Consider recently proposed SEGA [Hanzely et al., 2018]

• Assumes availability of P∇F (x) where P ∈ Rp×d where p� d

• We look at the special case of p = 1 and

P = e>it =
[
0 0 . . . 1 . . . 0 0

]
where it is randomly selected from {1, . . . , N}
• Sketched gradient is not an unbiased estimator!

82

Sketched Gradient Descent

• Consider recently proposed SEGA [Hanzely et al., 2018]

• Assumes availability of P∇F (x) where P ∈ Rp×d where p� d

• We look at the special case of p = 1 and

P = e>it =
[
0 0 . . . 1 . . . 0 0

]
where it is randomly selected from {1, . . . , N}

• Sketched gradient is not an unbiased estimator!

82

Sketched Gradient Descent

• Consider recently proposed SEGA [Hanzely et al., 2018]

• Assumes availability of P∇F (x) where P ∈ Rp×d where p� d

• We look at the special case of p = 1 and

P = e>it =
[
0 0 . . . 1 . . . 0 0

]
where it is randomly selected from {1, . . . , N}
• Sketched gradient is not an unbiased estimator!

82

SEGA: single coordinate update

• Unbiased gradient estimate must be maintained

• Starting with h1 = 0, we have

hjt+1 =

[∇F (xt)]j j = it

hjt j 6= it

[gt]j =

d[∇F (xt)]j + (1− d)hjt j = it

hjt j 6= it

• Maintain two d× 1 vectors, but update only 1 coordinate at a time

• Can we get GD-like performance with such sporadic updates?

83

SEGA: single coordinate update

• Unbiased gradient estimate must be maintained

• Starting with h1 = 0, we have

hjt+1 =

[∇F (xt)]j j = it

hjt j 6= it

[gt]j =

d[∇F (xt)]j + (1− d)hjt j = it

hjt j 6= it

• Maintain two d× 1 vectors, but update only 1 coordinate at a time

• Can we get GD-like performance with such sporadic updates?

83

SEGA: single coordinate update

• Unbiased gradient estimate must be maintained

• Starting with h1 = 0, we have

hjt+1 =

[∇F (xt)]j j = it

hjt j 6= it

[gt]j =

d[∇F (xt)]j + (1− d)hjt j = it

hjt j 6= it

• Maintain two d× 1 vectors, but update only 1 coordinate at a time

• Can we get GD-like performance with such sporadic updates?

83

SEGA: single coordinate update

• Unbiased gradient estimate must be maintained

• Starting with h1 = 0, we have

hjt+1 =

[∇F (xt)]j j = it

hjt j 6= it

[gt]j =

d[∇F (xt)]j + (1− d)hjt j = it

hjt j 6= it

• Maintain two d× 1 vectors, but update only 1 coordinate at a time

• Can we get GD-like performance with such sporadic updates?

83

SEGA: Unbiased Gradient Estimate

• Let us write in compact form:

ht+1 = ht + eit�(∇F (xt)− ht)

gt = ht + deit�(∇F (xt)− ht)

where � denotes element-wise product

• Note that E[eit] =
1

d
• Unbiased gradient:

Eit [gt] = ht + dEit [eit]� (∇F (xt)− ht) = ∇F (xt)

84

SEGA: Unbiased Gradient Estimate

• Let us write in compact form:

ht+1 = ht + eit�(∇F (xt)− ht)

gt = ht + deit�(∇F (xt)− ht)

where � denotes element-wise product

• Note that E[eit] =
1

d

• Unbiased gradient:

Eit [gt] = ht + dEit [eit]� (∇F (xt)− ht) = ∇F (xt)

84

SEGA: Unbiased Gradient Estimate

• Let us write in compact form:

ht+1 = ht + eit�(∇F (xt)− ht)

gt = ht + deit�(∇F (xt)− ht)

where � denotes element-wise product

• Note that E[eit] =
1

d
• Unbiased gradient:

Eit [gt] = ht + dEit [eit]� (∇F (xt)− ht) = ∇F (xt)

84

SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]
= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)
A = 2dL, B = 2d

SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]

= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)
A = 2dL, B = 2d

SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]
= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)
A = 2dL, B = 2d

SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]
= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)

A = 2dL, B = 2d

SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]
= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)

A = 2dL, B = 2d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]

= Eit
[∥∥∥(I− eite

>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]

= Eit
[∥∥∥(I− eite

>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]
= Eit

[∥∥∥(I− eite
>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]
= Eit

[∥∥∥(I− eite
>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]

=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]
= Eit

[∥∥∥(I− eite
>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]
= Eit

[∥∥∥(I− eite
>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]
= Eit

[∥∥∥(I− eite
>
it)ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it)ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)

86

Eit
[
(I− eite

>
it)eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
?)

ρ =
1

d
, C =

2L

d

SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87

SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87

SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87

SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87

SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87

Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

Gradient sketching

Hogwild!

6 Conclusion
88

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large

• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM

89

Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?

90

Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?

90

Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?

90

Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?

90

Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?

90

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput

• Synchronization requirement cause idling of cores

• Memory is locked while being written

91

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

Figure 3: (a) Bipartite graph (b) conflict graph representation

• Function f : Rn × E → R depends only on the subset of variables in ξi
• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi

92

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;

• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);

• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and

• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability

93

Hogwild Algorithm

• Define [x]ξ ∈ Rd×1 to contain only those entries that are in ξ, i.e.,

([x]ξ)j =

0 j /∈ ξ

xj j ∈ ξ

• The full algorithm takes the form:

Algorithm 1 Hogwild! (at each core, in parallel)

1: repeat

2: Sample an hyperedge ξ

3: Let [x̂]ξ = an inconsistent read of [x]ξ
4: Evaluate [u]ξ = −η∇f([x̂]ξ, ξ)

5: for v ∈ ξ do:

6: xv ← xv + uv

7: end for

8: until number of edges ≤ T

94

Hogwild Algorithm

• Define [x]ξ ∈ Rd×1 to contain only those entries that are in ξ, i.e.,

([x]ξ)j =

0 j /∈ ξ

xj j ∈ ξ

• The full algorithm takes the form:

Algorithm 2 Hogwild! (at each core, in parallel)

1: repeat

2: Sample an hyperedge ξ

3: Let [x̂]ξ = an inconsistent read of [x]ξ
4: Evaluate [u]ξ = −η∇f([x̂]ξ, ξ)

5: for v ∈ ξ do:

6: xv ← xv + uv

7: end for

8: until number of edges ≤ T

94

Hogwild Algorithm

• Define [x]ξ ∈ Rd×1 to contain only those entries that are in ξ, i.e.,

([x]ξ)j =

0 j /∈ ξ

xj j ∈ ξ

• The full algorithm takes the form:

Algorithm 3 Hogwild! (at each core, in parallel)

1: repeat

2: Sample an hyperedge ξ

3: Let [x̂]ξ = an inconsistent read of [x]ξ
4: Evaluate [u]ξ = −η∇f([x̂]ξ, ξ)

5: for v ∈ ξ do:

6: xv ← xv + uv

7: end for

8: until number of edges ≤ T
94

Perturbed SGD

• Cannot write Hogwild in classical SGD form

• Instead consider perturbed SGD with some random variable ξt

xt+1 = xt − η∇f(x̂t, ξt)

where x̂t = xt + nt with noise nt independent of ξt

• Defining δt := E[‖xt − x?‖], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

95

Perturbed SGD

• Cannot write Hogwild in classical SGD form

• Instead consider perturbed SGD with some random variable ξt

xt+1 = xt − η∇f(x̂t, ξt)

where x̂t = xt + nt with noise nt independent of ξt

• Defining δt := E[‖xt − x?‖], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

95

Perturbed SGD

• Cannot write Hogwild in classical SGD form

• Instead consider perturbed SGD with some random variable ξt

xt+1 = xt − η∇f(x̂t, ξt)

where x̂t = xt + nt with noise nt independent of ξt

• Defining δt := E[‖xt − x?‖], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

95

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

Proof: Expand the optimality gap

and add-subtract 〈x̂t,∇f(x̂t, ξt)〉

‖xt+1 − x?‖2 = ‖xt − x? − η∇f(x̂t, ξt)‖
= ‖xt − x?‖2 − 2η〈x̂t − x?,∇f(x̂t, ξt)〉+ η2 ‖∇f(x̂t, ξt)‖2 + 2η〈x̂t − xt,∇f(x̂t, ξt)〉

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈x̂t − x?,∇F (x̂t)〉+ η2 ‖∇f(x̂t, ξt)‖2

+ 2ηE〈x̂t − xt,∇f(x̂t, ξt)〉

Lemma follows from using µ-strong convexity and triangle inequality:

〈x̂t − x?,∇F (x̂t)〉 ≥ µ ‖x̂t − x?‖2 ≥ µ

2
‖xt − x?‖2 − µ ‖x̂t − xt‖2

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

Proof: Expand the optimality gap and add-subtract 〈x̂t,∇f(x̂t, ξt)〉

‖xt+1 − x?‖2 = ‖xt − x? − η∇f(x̂t, ξt)‖
= ‖xt − x?‖2 − 2η〈x̂t − x?,∇f(x̂t, ξt)〉+ η2 ‖∇f(x̂t, ξt)‖2 + 2η〈x̂t − xt,∇f(x̂t, ξt)〉

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈x̂t − x?,∇F (x̂t)〉+ η2 ‖∇f(x̂t, ξt)‖2

+ 2ηE〈x̂t − xt,∇f(x̂t, ξt)〉

Lemma follows from using µ-strong convexity and triangle inequality:

〈x̂t − x?,∇F (x̂t)〉 ≥ µ ‖x̂t − x?‖2 ≥ µ

2
‖xt − x?‖2 − µ ‖x̂t − xt‖2

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

Proof: Expand the optimality gap and add-subtract 〈x̂t,∇f(x̂t, ξt)〉

‖xt+1 − x?‖2 = ‖xt − x? − η∇f(x̂t, ξt)‖
= ‖xt − x?‖2 − 2η〈x̂t − x?,∇f(x̂t, ξt)〉+ η2 ‖∇f(x̂t, ξt)‖2 + 2η〈x̂t − xt,∇f(x̂t, ξt)〉
Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈x̂t − x?,∇F (x̂t)〉+ η2 ‖∇f(x̂t, ξt)‖2

+ 2ηE〈x̂t − xt,∇f(x̂t, ξt)〉

Lemma follows from using µ-strong convexity and triangle inequality:

〈x̂t − x?,∇F (x̂t)〉 ≥ µ ‖x̂t − x?‖2 ≥ µ

2
‖xt − x?‖2 − µ ‖x̂t − xt‖2

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

Proof: Expand the optimality gap and add-subtract 〈x̂t,∇f(x̂t, ξt)〉

‖xt+1 − x?‖2 = ‖xt − x? − η∇f(x̂t, ξt)‖
= ‖xt − x?‖2 − 2η〈x̂t − x?,∇f(x̂t, ξt)〉+ η2 ‖∇f(x̂t, ξt)‖2 + 2η〈x̂t − xt,∇f(x̂t, ξt)〉
Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈x̂t − x?,∇F (x̂t)〉+ η2 ‖∇f(x̂t, ξt)‖2

+ 2ηE〈x̂t − xt,∇f(x̂t, ξt)〉

Lemma follows from using µ-strong convexity and triangle inequality:

〈x̂t − x?,∇F (x̂t)〉 ≥ µ ‖x̂t − x?‖2 ≥ µ

2
‖xt − x?‖2 − µ ‖x̂t − xt‖2

96

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)

97

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ

98

Hogwild: modeling inconsistent reads

• Let Stι be diagonal matrix with entries in {−1, 0, 1}
• Define conflicting edges: It := {t− τ, t− τ + 1, . . . t− 1, t+ 1, . . . , t+ τ}
• Then, all possible update orders can be written as

x̂t − xt = η
∑
ι∈It

Stι∇f(x̂ι, ξι)

• Models all patterns of possibly partial updates while ξt is being processed

99

Hogwild Analysis

Lemma

The following bounds hold:

E[‖x̂t − xt‖2] ≤ η2M

(
2τ + 8τ2 ∆

d

)
E[〈x̂t − xt,∇f(x̂t, et)〉] ≤ 4ηM2τ

∆

d

We use ‖∇f(x̂t, ξι)‖ ≤M

and Pr(ξι ∩ ξt 6= ∅) =
2∆

d

E[〈x̂t − xt,∇f(x̂t, ξt)〉] = η
∑
ι∈It

E[〈Stι∇f(x̂ι, ξι),∇f(x̂t, ξt)〉]

≤ ηM2
∑
ι

Pr [ξι ∩ ξt 6= ∅]

≤ 2ηM2τ
2∆

d

100

Hogwild Analysis

Lemma

The following bounds hold:

E[‖x̂t − xt‖2] ≤ η2M

(
2τ + 8τ2 ∆

d

)
E[〈x̂t − xt,∇f(x̂t, et)〉] ≤ 4ηM2τ

∆

d

We use ‖∇f(x̂t, ξι)‖ ≤M

and Pr(ξι ∩ ξt 6= ∅) =
2∆

d

E[〈x̂t − xt,∇f(x̂t, ξt)〉] = η
∑
ι∈It

E[〈Stι∇f(x̂ι, ξι),∇f(x̂t, ξt)〉]

≤ ηM2
∑
ι

Pr [ξι ∩ ξt 6= ∅]

≤ 2ηM2τ
2∆

d

100

Hogwild Analysis

Lemma

The following bounds hold:

E[‖x̂t − xt‖2] ≤ η2M

(
2τ + 8τ2 ∆

d

)
E[〈x̂t − xt,∇f(x̂t, et)〉] ≤ 4ηM2τ

∆

d

We use ‖∇f(x̂t, ξι)‖ ≤M and Pr(ξι ∩ ξt 6= ∅) =
2∆

d

E[〈x̂t − xt,∇f(x̂t, ξt)〉] = η
∑
ι∈It

E[〈Stι∇f(x̂ι, ξι),∇f(x̂t, ξt)〉]

≤ ηM2
∑
ι

Pr [ξι ∩ ξt 6= ∅]

≤ 2ηM2τ
2∆

d

100

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large

101

State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?

102

State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?

102

State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?

102

State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?

102

State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?

102

Conclusion

103

Summary

• Oracle complexity results for different SGD variants

• Intuition regarding variance reduction and coordinate descent

• When to apply which version?

• Unified and simplified proofs (extend to non-strongly convex settings also)

• State-of-the-art and open problems

104

References i

Allen-Zhu, Z. (2017).

Katyusha: The first direct acceleration of stochastic gradient methods.

The Journal of Machine Learning Research, 18(1):8194–8244.

Beck, A. (2017).

First-order methods in optimization, volume 25.

SIAM.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018).

Optimization methods for large-scale machine learning.

Siam Review, 60(2):223–311.

105

References ii

Bubeck, S. (2019).

Sebastien Bubeck’s blog: I’m a bandit.
https://blogs.princeton.edu/imabandit/2018/11/21/

a-short-proof-for-nesterovs-momentum/.
Accessed: 14 July 2019.

Bubeck, S. et al. (2015).

Convex optimization: Algorithms and complexity.

Foundations and Trends in Machine Learning, 8(3-4):231–357.

Cannelli, L., Facchinei, F., Kungurtsev, V., and Scutari, G. (2019).

Asynchronous parallel algorithms for nonconvex optimization.

Mathematical Programming, pages 1–34.

106

https://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
https://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/

References iii

Chen, Y. (2019).

Notes on large scale optimization for data science.
http://www.princeton.edu/~yc5/ele522_optimization/lectures.html.
Accessed: 23 June 2019.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. (2018).

Spider: Near-optimal non-convex optimization via stochastic

path-integrated differential estimator.

In Advances in Neural Information Processing Systems, pages 689–699.

Gorbunov, E., Hanzely, F., and Richtárik, P. (2019).

A unified theory of SGD: Variance reduction, sampling, quantization and

coordinate descent.

arXiv preprint arXiv:1905.11261.

107

http://www.princeton.edu/~yc5/ele522_optimization/lectures.html

References iv

Hanzely, F., Mishchenko, K., and Richtárik, P. (2018).

SEGA: Variance reduction via gradient sketching.

In Advances in Neural Information Processing Systems, pages 2082–2093.

Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance

reduction.

In Advances in neural information processing systems, pages 315–323.

Konevcnỳ, J., Liu, J., Richtárik, P., and Takávc, M. (2015).

Mini-batch semi-stochastic gradient descent in the proximal setting.

IEEE Journal of Selected Topics in Signal Processing, 10(2):242–255.

108

References v

Kovalev, D., Horváth, S., and Richtárik, P. (2019).

Don’t jump through hoops and remove those loops: SVRG and Katyusha

are better without the outer loop.

arXiv preprint arXiv:1901.08689.

Krizhevsky, A. (2009).

Learning multiple layers of features from tiny images.

Master’s thesis, University of Toronto.

Lin, H., Mairal, J., and Harchaoui, Z. (2015).

A universal catalyst for first-order optimization.

In Advances in neural information processing systems, pages 3384–3392.

109

References vi

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and Jordan,

M. I. (2017).

Perturbed iterate analysis for asynchronous stochastic optimization.

SIAM Journal on Optimization, 27(4):2202–2229.

Nguyen, L. M., Liu, J., Scheinberg, K., and Takávc, M. (2017).

Sarah: A novel method for machine learning problems using stochastic

recursive gradient.

In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 2613–2621.

Recht, B., Re, C., Wright, S., and Niu, F. (2011).

Hogwild: A lock-free approach to parallelizing stochastic gradient descent.

In Advances in neural information processing systems, pages 693–701.

110

References vii

Saunders, M. (2019).

Notes on first-order methods for minimizing smooth functions.
https://web.stanford.edu/class/msande318/notes/

notes-first-order-smooth.pdf.
Accessed: 23 June 2019.

Sun, H., Lu, S., and Hong, M. (2019).

Improving the sample and communication complexity for decentralized

non-convex optimization: A joint gradient estimation and tracking

approach.

arXiv preprint arXiv:1910.05857.

Vandenberghe, L. (2019).

Optimization methods for large-scale systems.
http://www.seas.ucla.edu/~vandenbe/ee236c.html.
Accessed: 14 Aug. 2019.

111

https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
http://www.seas.ucla.edu/~vandenbe/ee236c.html

References viii

Wang, F., Dai, J., Li, M., Chan, W.-c., Kwok, C. C.-h., Leung, S.-l., Wu, C., Li,

W., Yu, W.-c., Tsang, K.-h., et al. (2016).

Risk assessment model for invasive breast cancer in Hong Kong women.

Medicine, 95(32).

Wang, Z., Ji, K., Zhou, Y., Liang, Y., and Tarokh, V. (2018).

Spiderboost: A class of faster variance-reduced algorithms for nonconvex

optimization.

arXiv preprint arXiv:1810.10690.

Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye, Y., Li, L.-J., and Fei-Fei,

L. (2018).

Distributed asynchronous optimization with unbounded delays: How slow

can you go?

In International Conference on Machine Learning, pages 5970–5979.

112

References ix

Zhu, R., Niu, D., and Li, Z. (2018).

Asynchronous stochastic proximal methods for nonconvex nonsmooth

optimization.

arXiv preprint arXiv:1802.08880.

113

	Context
	Problem Formulation: Online and Finite Sum

	Background
	Vanilla Stochastic Gradient Descent: Large N
	Variance-Reduced SGD: Moderate N
	High-dimensional problems: large d
	Conclusion

