SGD and Friends

How to solve large-scale optimization problems?

Ketan Rajawat
February 24, 2020

Indian Institute of Technology Kanpur

@ Context

@® Background
© Vanilla Stochastic Gradient Descent: Large N

@ Variance-Reduced SGD: Moderate N

@ High-dimensional problems: large d

@ Conclusion

Context

@ Context

Problem Formulation: Online and Finite Sum

Problem Formulation

Consider the optimization problem:

min F'(x) := —Zf(x,&') (P)

xeX N 4

Problem Formulation

Consider the optimization problem:

min F'(x) := —Zf(x,&') (P)

xeX

=

e X C R where d is problem dimension

Problem Formulation

Consider the optimization problem:

Z| =

min F'(x) := —Zf(x,&) (P)

xeX

e X C R where d is problem dimension

® ¢, indexes the data points/observations/samples

Problem Formulation

Consider the optimization problem:

2|~

min F'(x) := —Zf(x,&) (P)

xeX

e X C R where d is problem dimension
® ¢, indexes the data points/observations/samples

® N is the size of data set

® Online optimization or N — 00

min F'(x) := E¢ [f(x,)]

xeX

® Online optimization or N — 00

min F'(x) := E¢ [f(x,)]

xeX

® Use a regularizer h

xméi)r(l R(x) := F(x) + h(x)

® Online optimization or N — 00

min F'(x) := E¢ [f(x,)]

xeX

® Use a regularizer h

xméi)r(l R(x) := F(x) + h(x)

® Distributed/decentralized setting with K nodes

K
min ZRk(X)
k=1

xeX

Challenges of Big Data

® |arge dimension d
® Hessian inverse [V?F(x)] ™" requires O(d*) computations
® Approximate Hessian inverse still requires O(d?) computations, e.g., BFGS
® V\ery large d: must store x on the disk instead of RAM, write operation is bottleneck

Challenges of Big Data

® |arge dimension d
® Hessian inverse [V?F(x)] ™" requires O(d*) computations
® Approximate Hessian inverse still requires O(d?) computations, e.g., BFGS
® \ery large d: must store x on the disk instead of RAM, write operation is bottleneck

® | arge dataset size NV
® Even calculating the gradient VF(x) at every iteration impractical
® Cannot store entire data on a single machine
® Read/write operations become the bottleneck

Challenges of Big Data

® |arge dimension d
® Hessian inverse [V?F(x)] ™" requires O(d*) computations
® Approximate Hessian inverse still requires O(d?) computations, e.g., BFGS
® \ery large d: must store x on the disk instead of RAM, write operation is bottleneck

® | arge dataset size NV

® Even calculating the gradient VF(x) at every iteration impractical
® Cannot store entire data on a single machine
® Read/write operations become the bottleneck

® |deally complexity should be O(dN)

@ Context

Examples

Example: Lasso Regression

Predictors for breast
cancer selected via
LASSO regression
[Wang et al., 2016]

Coefficient

Variables Premenopausal Postmenopausal
Age 0.367 0.346
Body mass index 0.935
Age at menarche —0.075
Age at 1st give birth 0.141
Number of parity 0.137 —0.184
Breast feeding —0.110
QOral contraceptive —0.090
hormone replace treatment —0.710
Case number of BCFDR 0.855 0.844
Benign breast diseases 0.296
Alcohol drinking 0.631

LAN 0.264 0.238
Sleep quality —0.256 —0.122

Age (20, 30, 40, 50, 60, 70, and >70 years old); body mass index (<18.5, 18.5-24, 24-27, and
>27); age at menarche (<12, 12, 13, 14, 15, and 16~ years old); age at 1st give birth (<20, 20-25,
and 25~ years old); number of parity (0, 1, 2, and >2); breast feeding duration (no, <1, 1-3 and,
>3 years); LAN (1, dark; 2, few light; and 3, little bright); sleep quality (1, good; 2, common; 3, poor;
and 4, poor with sleep pill). BCFDR=breast cancer in first degree-relatives, LAN=light at night,
LASSO = least absolute shrinkage and selection operator, SD = standard deviation.

Example: Lasso Regression

® Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

10

Example: Lasso Regression

® Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

e Optimization problem formulated as

mln—ZEa x,b;) + A ||x||;

xeRd N

10

Example: Lasso Regression

® Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

e Optimization problem formulated as

mln—ZEa x,b;) + A ||x||;

xeRd N

® | oss function ¢ could be least-squares, logistic, hinge loss, etc.

10

Example: Lasso Regression

Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

e Optimization problem formulated as

mln—ZEa x,b;) + A ||x||;

xeRd N

® | oss function ¢ could be least-squares, logistic, hinge loss, etc.

® Non-zero entries of x correspond to features that explain b;

10

Example: Lasso Regression

Given feature-label pairs (a;, b;) for each patient i € {1,..., N}

e Optimization problem formulated as

mln—ZEa x,b;) + A ||x||;

xeRd N

® | oss function ¢ could be least-squares, logistic, hinge loss, etc.
® Non-zero entries of x correspond to features that explain b;

® /i-norm penalty “encourages”’ sparsity

10

Example: Visual Object Recognition

CIFAR-10 dataset
contains 60000 labeled
images of 10 objects
[Krizhevsky, 2009]

== RS - [BRI
E e NeE=S

 mild 'ﬁﬂ yERe
PERL LT
Pl o ERTLl
ME<s B
EEENESDAEE
BN EEEE
e e P
<N ES RS0

11

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

® Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

® Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

® Here, NN(a;,x) is a non-linear function of x, and

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

® Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

® Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

® Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

® Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network
® elements of x are weights/parameters of the network

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

® Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

® Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network
® elements of x are weights/parameters of the network

e V«NN(a;,x) can be efficiently calculated via back-propagation

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network
® elements of x are weights/parameters of the network

VxNN(a;,x) can be efficiently calculated via back-propagation

® Deep Learning community focuses on designing NN

12

Example: Neural Networks

® Given feature-label pairs (a;, b;), optimization problem is

mln—Zf (ay, b;)

Objective f is non-convex and may take the form

f(X, (aiv bl)) = E(NN(ai,x), bi)

Here, NN(a;,x) is a non-linear function of x, and

® structure of NN() is defined by the neural network
® elements of x are weights/parameters of the network

VxNN(a;,x) can be efficiently calculated via back-propagation
® Deep Learning community focuses on designing NN

® Optimization community focuses on solving (GD) for general f

12

Example: Recommender Systems

" > -
'w NEW & INTERESTING FINDS ON AMAZON @ i”') ‘ Ve 7 -
amazon CYBER MONDAY IS

Departments - Browsing History ~ Matt's Amazon.com

Hello, Matt A\,
Cyber Monday Gift Cards & Registry Sell Help Your Account -~ Prime ~ Lists - Cart

Your Amazon.com Your Browsing History ~ Recommended For You Improve Your Recommendations Your Profile Learn More

Matt's You could be seeing useful stuff here!
o [soon |
Amazon Sign in to get your order status, balances and rewards. Sig

Recommended for you, Matt

T

Buy It Again in Grocery

=8

Buy It Again in Pets

Buy It Again in Baby Products

Engineering Books

13

Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq

14

Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq

® Find the complete matrix X

14

Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq
® Find the complete matrix X

e If X is suspected to be low-rank, solve [Recht et al., 2011]

> (Miy— Xij)* + MIX|,

min @
my1 Xmg
XeRy (1,5)EQ

14

Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq

Find the complete matrix X

If X is suspected to be low-rank, solve [Recht et al., 2011]

> (Miy— Xij)* + MIX|,

min @
my1 Xmg
XeRy (1,5)EQ

Here, | X]||, encourages X to be low-rank

14

Example: Non-negative Matrix Completion

® Given ratings matrix M € R™!""™2 with observed entries {M;;} jcq

Find the complete matrix X

If X is suspected to be low-rank, solve [Recht et al., 2011]

> (Miy— Xij)* + MIX|,

min @
my1 Xmg
XeRy (1,5)EQ

Here, | X]||, encourages X to be low-rank

High-dimensional problem: since d = myms > |Q| = N

14

@ Context

State-of-the-art and Oracle Complexity

15

How to compare?

® Which is better: GD or SGD?

16

How to compare?

® Which is better: GD or SGD?

® Which variant of SGD should | use for a given problem?

16

How to compare?

® Which is better: GD or SGD?
® Which variant of SGD should | use for a given problem?

® Such questions arise in any field

16

How to compare?

Which is better: GD or SGD?
Which variant of SGD should | use for a given problem?

Such questions arise in any field

® Sometimes left unanswered, e.g. in, Deep Learning

16

How to compare?

Which is better: GD or SGD?

Which variant of SGD should | use for a given problem?

Such questions arise in any field

® Sometimes left unanswered, e.g. in, Deep Learning

But, the landscape of SGD is much more structured

16

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)

e Call to an oracle costs 1 unit

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)
® Call to an oracle costs 1 unit

® So an algorithm that makes fewer calls to the oracle is better!

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)
® Call to an oracle costs 1 unit
® So an algorithm that makes fewer calls to the oracle is better!

® QOracle complexity is the cost required to obtain a desired accuracy

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)
® Call to an oracle costs 1 unit
® So an algorithm that makes fewer calls to the oracle is better!

® QOracle complexity is the cost required to obtain a desired accuracy
Oracle complexity of SGD: convex objectives

L . . Ld ,
For general convex objective functions, SGD requires O(—;) calls to oracle in order to
€
achieve an optimality gap of e.

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)
® Call to an oracle costs 1 unit
® So an algorithm that makes fewer calls to the oracle is better!

® QOracle complexity is the cost required to obtain a desired accuracy
Oracle complexity of SGD: convex objectives

L . . Ld ,
For general convex objective functions, SGD requires O(—;) calls to oracle in order to
€
achieve an optimality gap of e.

® Terms within O may be initialization dependent

® Notation hides away many complexities

17

Oracle Complexity

® Given x, an oracle provides us V f(x,&;)

® (Call to an oracle costs 1 unit
® So an algorithm that makes fewer calls to the oracle is better!
[]

Oracle complexity is the cost required to obtain a desired accuracy
Oracle complexity of SGD: convex objectives

L . . Ld ,
For general convex objective functions, SGD requires O(—;) calls to oracle in order to
€
achieve an optimality gap of e.

® Terms within O may be initialization dependent
® Notation hides away many complexities

% IVE)?, or F(x) — F(x¥)

e Gap measured by ||x — x*|

17

State-of-the-art in SGD

® New avenues for applying SGD emerge every year

18

State-of-the-art in SGD

® New avenues for applying SGD emerge every year

® Several variants of SGD are proposed every month

18

State-of-the-art in SGD

® New avenues for applying SGD emerge every year
® Several variants of SGD are proposed every month

® Papers analyzing performance of these variants come up everyday

18

State-of-the-art in SGD

® New avenues for applying SGD emerge every year

Several variants of SGD are proposed every month

Papers analyzing performance of these variants come up everyday

Difficult to consolidate and maintain perspective

18

This Tutorial

® Unified view of many SGD variants

19

This Tutorial

® Unified view of many SGD variants

® Based on recent results, but readily accessible: “easy” math

19

This Tutorial

® Unified view of many SGD variants
® Based on recent results, but readily accessible: “easy” math

® First timers: do not try to understand it all, but do ask questions

19

This Tutorial

Unified view of many SGD variants
® Based on recent results, but readily accessible: “easy” math
® First timers: do not try to understand it all, but do ask questions

® Up-and-comers: identify gaps and target them, also keep asking questions

19

This Tutorial

Unified view of many SGD variants
® Based on recent results, but readily accessible: “easy” math
® First timers: do not try to understand it all, but do ask questions

® Up-and-comers: identify gaps and target them, also keep asking questions

Experts: what new result am | unaware of?

19

This Tutorial

® Unified view of many SGD variants

® Based on recent results, but readily accessible: “easy” math

® First timers: do not try to understand it all, but do ask questions

® Up-and-comers: identify gaps and target them, also keep asking questions
® [xperts: what new result am | unaware of?

® |ater: get slides from my website

19

References

o Key reference text: [Beck, 2017]

¢ Introductory (deterministic): [Vandenberghe, 2019]

® [Bubeck et al., 2015] is good introduction to the topic

® Related course lecture notes: [Saunders, 2019, Chen, 2019]
® Sebastien Bubeck'’s blog: [Bubeck, 2019]

® This tutorial is an amalgamation of [Gorbunov et al., 2019], [Bottou et al., 2018],
and [Recht et al., 2011]

® |nspired from the tutorial: https://www.youtube.com/watch?v=a05S0kL5u30

20

https://www.youtube.com/watch?v=a05S0kL5u30

Background

21

@® Background

Convexity

22

Convex Functions: Zeroth Order Condition

Definition
A function f is convex if (a) its domain is a convex set; and (b) it satisfies

fOx+(1—0)y) <Of(x)+(1—06)f(y)

23

Convex Functions: First and Second Order Conditions

Definition
A function f is convex if (a) its domain is a convex set; and (b) it satisfies

fy) 2 fx) +(Vf(x),y —%)

Alternatively: eigenvalues of (V2F(x)) > 0

24

Strongly Convex Functions

25

Strongly Convex Functions: Quadratic Lower Bound

Definition
A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies

F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p

26

Strongly Convex Functions: Quadratic Lower Bound

Definition
A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies

F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p

f5-norm square example

The function f(x) ||| is 1-strongly convex

26

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies
v
F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p

f5-norm square example

1
The function f(x) = 3 |x]|? is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

Za x = bi)? + Al

26

Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F'is p-strongly convex if (a) its domain is a convex set; and (b) it satisfies
v
F) 2 £60) + (V0,5 =) + 5 Iy — x|

where 1 > 0. Alternatively, eigenvalues of (V2F(x)) > p

f5-norm square example

1
The function f(x) = 3 |x]|? is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

Za x = bi)? + Al

. . 1
Show that for this case ;1 = smallest eigenvalue of N ZaiaiT 2%
Al

@® Background

Smoothness

27

Smooth Functions

/77001‘6

28

Smooth Functions: Quadratic Upper Bound

Definition
A function F'is L-smooth

F(9) < 169 + (V160 y =) + & [x ~ ¥

Alternatively: eigenvalues of (V2F(x)) < L

29

Bregman Divergence

® Bregman divergence over a function F' is defined as

Dr(x,y) = F(y) — F(x) —(VF(x),y — x)

30

Bregman Divergence

® Bregman divergence over a function F' is defined as
DF(X7Y) = F(y) - F(X) - <VF(X)7y - X>
® Bregman divergence is not symmetric (and not a metric) but satisfies

"
9 Ix —y|> <Dr(x,y) < = [Ix — y|°

no|

30

Bregman Divergence

® Bregman divergence over a function F' is defined as
DF(X7Y) = F(y) - F(X) - <VF(X)7y - X>

® Bregman divergence is not symmetric (and not a metric) but satisfies

L
Elx—yI* <Dr(xy) < 5 Ix -yl
1 1
o IVF) = VEG)I? <Dr(x,y) < 5 IVF(0) = V()

30

@® Background

Subgradients, projection, and proximal operators

31

Non-smooth convex functions

® If h is non-smooth convex, may still define subgradient v(x) € dh(x)

32

Non-smooth convex functions

® If h is non-smooth convex, may still define subgradient v(x) € dh(x)

e Satisfies first order convexity condition as usual

fFy) =2 f(x) +({v(x),y —x)

32

Non-smooth convex functions

® If h is non-smooth convex, may still define subgradient v(x) € dh(x)

e Satisfies first order convexity condition as usual

fFy) =2 f(x) +({v(x),y —x)

® Optimality condition for x* = argmin f(x):
X

v(x*) =0 € Oh(x")

32

Projection Operator

® Define the projection over a set X as

1
P (x) = argmin 3 [y — x|
yeX

33

Projection Operator

® Define the projection over a set X as

1
P (x) = argmin 3 [y — x|
yeX

® Equivalent formulation
1 2
P (x) = argmin o [ly — x[|” + 1 (x)
y

where the indicator function is defined as

0 xeX

L) = o x¢X

33

Proximal Operator

® Proximal operator generalizes projection

1
prox, () = y* = axgmin 5 [ly = x| + h(x)
Yy

34

Proximal Operator

® Proximal operator generalizes projection
* : 1 2
prox, (x) = y* = arg min 3 ly — x||“ + h(x)
y
® Useful property: differentiate and equate to zero
y'—x+v(y*) =0

where y* = prox;,(x) and v(y*) € 0h(y”*)

34

Vanilla Stochastic Gradient Descent: Large N

35

© Vanilla Stochastic Gradient Descent: Large N

Gradient Descent vs. Stochastic Gradient Descent

36

Gradient Descent vs. Stochastic Gradient Descent

® Gradient descent for solving (P)

x¢+1 = Py (Xt - *va xt, &)

® N oracle calls per iteration

37

Gradient Descent vs. Stochastic Gradient Descent

® Gradient descent for solving (P)

x¢+1 = Py (Xt - *va xt, &)

® N oracle calls per iteration

e Stochastic gradient descent for solving (P)

X1 = Px (x¢ =V f(x4,&,))

where iy € {1,..., N} is a random number.

37

Gradient Descent vs. Stochastic Gradient Descent

® Gradient descent for solving (P)

N
xi11 = Px (Xt — % Z Vf(&efi))
=il

® N oracle calls per iteration

e Stochastic gradient descent for solving (P)
Xe+1 = P (xe — 0V f (e, &i,))

where iy € {1,..., N} is a random number.
® Descent direction on average: expectation w.r.t. i,

N

Ei, [Vf(xt,&.)] = %Z f(x¢,&) = VF(x)
i=1

37

® SGD more efficient at accessing data

38

® SGD more efficient at accessing data

® handles redundancy in dataset better

38

Intuition

® SGD more efficient

at accessing data

® handles redundancy
in dataset better

® consider lasso
example: features
a; ©
span(a(l), a(2),a(3))

1072

107

GD
10°

=]

5GD

]

0

1000 2000 3000 4000 5000 6000 7000
gradient calcuations

BOOD 9000 10000

38

History of SGD

® Given (X,Y) observations, let ®(X) be a transformation

® SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient
LMS (Widrow-Hoff'60) %(Y — ®(X) 'x)? (®(X) 'x — Y)®(X)

39

History of SGD

® Given (X,Y) observations, let ®(X) be a transformation

® SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient
LMS (Widrow-Hoff'60) %(Y — ®(X) 'x)? (®(X) 'x — Y)®(X)
Perceptron (Rosenblatt'57) [—Y(®(X),x)]+ —Y®(X) 1y (a(x) x)<0

39

History of SGD

® Given (X,Y) observations, let ®(X) be a transformation

® SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient
LMS (Widrow-Hoff'60) %(Y — ®(X) 'x)? (®(X) 'x — Y)®(X)
Perceptron (Rosenblatt'57) [—Y(®(X),x)]+ —Y®(X) 1y (a(x) x)<0
SVM (Cortes-Vapnik'95) g [+ [1 = Y(R(X),x)]+ Ax — Y®(X)Ly(ax)x)<1

39

© Vanilla Stochastic Gradient Descent: Large N

Performance of Stochastic Grandient Descent

40

L-smoothness

2

Dp(x,y) < — |lx -yl

Nlie

41

L-smoothness [-convexity

2

Dp(x,y) < — |lx -yl

Nlie

U
Dr(x,y) > 5 % — YHQ

41

L-smoothness [-convexity

Nlie

I
Dr(x,y) < = |x—y]|? Dp(x,y) > §H><—yH2

Bounded Variance

Ei, [IVS(x,&)I7] < 0+ cIVF ()]
= Eit |:va(X*7€Zt)H2} < o’

provided VF(x*) =0 and ¢ > 1.
o2 is the inherent data variance

41

Strong Convexity and Smoothness: Condition Number

(Smé”.‘-i =L/n) (large k = L/)

42

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O ())
JL€

43

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O ())
JL€

For simplicity, consider unconstrained version: x;11 — x¢ = nV f(x¢,&;,)
Proof: Step 1. Quadratic upper bound (L-smootheness):

L
F(x¢y1) < F(xt) + (VF(Xt), %441 — %¢) + > 41 — x|

43

Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

. L
For L-smooth, u-convex functions, SGD incurs oracle complexity of O <>)
JL€

For simplicity, consider unconstrained version: x;11 — x¢ = nV f(x¢,&;,)
Proof: Step 1. Quadratic upper bound (L-smootheness):

Plxear) < () + (VF(xe), X0 30 + 2 e —
2
- F(xt) - T/<VF(Xt)7 vf(xf£7t)> + % va(xtvfit)HZ

Update Equation
X1 — Xt =V f (x4, &) J

43

SGD: Strongly Convex + Smooth

Step 2. Take expectation

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LB, (19)]

44

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~ n(VF(x), VEG) + VB, (197600 8)1P]

a4

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]
n?0?L
2

< F(x¢) — 77<177L(’) IVE(x)Hg +

Ei, [IV£(x)]
<o’ +c|VF)?

44

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

nLe <1 |

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]

- nLc 77202L
< Flx) = (175 IVFG I + T
n 9 77 oL
< F(x) — 3 IVF(x)]l5 + 5

44

SGD: Strongly Convex + Smooth

Step 2. Take expectation, use E;, [V f(x¢,&:,)] = VF(x¢)

2
Ei [F(xe1)] < F(o) — m{VF(xe), B [V (e &6)]) + LUE, [I9Fxe)1P]

2
= F(x) ~n(VF(x), VFG) + VB, (19700 8)1P]

7720'2L
2

< F(x¢) — 77(177L(> IVE(x)Hg +

n?c2L
2

,,
< F(xe) = 5 IVF(x)l3 +

Function decrement in SGD J

Function value decreases (on average) only when the gradient is large!

44

SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

n?02L

By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=

45

SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

2 2
L
By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=
n?o’L

< (1—pm)(F(x) = F(e) + 2

% IVE)|® > (P (x:) — F(x¥)) J

45

SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

2 2
L
By, [F(xe+1)] =F(¢") < F(xe)=F(x*) = 1 [V (xy)|* + 1=
n?o’L

< (1—pm)(F(x) = F(e) + 2

45

SGD: Strongly Convex + Smooth

Step 3. Relate || VF(x;)||*> with optimality gap:
subtract F'(x*) , and use strong convexity

n?02L

Ei, [F(xt11)] —F (") SF(Xt)—F(X*)—gHVF(x0)||° + 5~ 5

%9
oL
—1—77

Set Ay = E[F(x441) — F(x")]

One-step inequality

252,
A1 < (1— pm) Ay + 2

45

SGD: Strongly Convex + Smooth

One-step inequality

n?0?L

A1 < (1 —pn)Ag + 5

Step 4. Obtain final inequality:

46

SGD: Strongly Convex + Smooth

One-step inequality

2 2
oL
Appr < (1 — pm)Ag + 3
Step 4. Obtain final inequality:
Apply recursively over t =1,... 1"
2 2
o°L 1
Arpr < (1—pm) Ay + d SR
I

46

SGD: Strongly Convex + Smooth

Final inequality

no’L
20

App < (1—pn)TAr +

Step 5. Pick n:

47

SGD: Strongly Convex + Smooth

Final inequality

no’L

Aryr < (1—pm)" Ay + 7
1

Step 5. Pick n:

€\ . :
® Equate each term to € = n = O(J’L;—L) (ignore unimportant constants)

47

SGD: Strongly Convex + Smooth

Final inequality

no’L
20

App < (1—pn)TAr +

Step 5. Pick n:

€\ . :
® Equate each term to € = n = O(J’L;—L) (ignore unimportant constants)

® Solve for T: (1 — un)T = € and use log(1 — un) ~ —pun to obtain

2 2
T=0 (JLlog <1)> ~ 0 <0L>
L€ € 1€

47

Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)

48

Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)

® Can select a diminishing step-size to obtain slight improvement

48

Practical Considerations

e With fixed 1, SGD converges fast, but slows when optimality gap is O(n)
® Can select a diminishing step-size to obtain slight improvement

® Other approach: half the step-size when progress stalls [Bottou et al., 2018]

E[F (wy)]

48

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

L
For L-smooth functions, SGD incurs oracle complexity of O (2> .
€

49

Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

L
For L-smooth functions, SGD incurs oracle complexity of O (2> .
€

Proof for unconstrained version: x;1 —x; = nV f(x4,&;,)-
Recall from L-smoothness and nLc < 1 (here: A, = E[F(x;)] — F(x*) > 0):

7720'2L
2

App1 < Ay — ﬂ IVF ()| +

T?]O‘L

<A - ZHVF)| +

49

SGD: Smooth

® Rearrange to obtain:

=

2A
min B[VF(x,)I2] Z IVE(x)]2] < n02L+n—TI

50

SGD: Smooth

® Rearrange to obtain:

=

2A
min B[VF(x,)I2] Z IVE(x)|2] < no’L + TTI
® Equate each term to € to obtain n = QLL and

r-o(%)

oracle calls required to reach close to a first order stationary point

50

Variance-Reduced SGD: Moderate N

Bl

Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

52

Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations

52

Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations

® But each iteration requires N oracle calls: so oracle complexity is O (7 log(g)>

52

Gradient Descent or Stochastic Gradient Descent?

= &=

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

® Standard gradient descent requires O (/% log(%)> iterations
® But each iteration requires N oracle calls: so oracle complexity is O (7 log(g)>

® |n contrast, SGD requires O (i) oracle calls: independent of NV

52

Speeding up SGD?

log(excess loss)

GD

oracle calls

53]

Speeding up SGD?

log(excess loss)

GD
177

oracle calls

53]

Variance Reduction

® We consider the generic SGD algorithm:

Xi+1 = X¢ — N8t

where g; is an unbiased gradient approximation

54

Variance Reduction

® We consider the generic SGD algorithm:

Xi+1 = X¢ — N8t

where g; is an unbiased gradient approximation

® Example:
N
g =% VIikx,&) (GD)
i=1
g = Vf(xt &) (SGD)
(mini-batch)

54

Variance Reduction

® We consider the generic SGD algorithm:
X+l = X — N8t

where g; is an unbiased gradient approximation

® Example:
N
= Z F(xt, &) (GD)
- (f7€if) (SGD)
g = ?va X¢, & (mini-batch)
eB

54

Effect of Mini Batching

e Consider b random variables {X;}?_, such that V;(X;) = o

55

Effect of Mini Batching

e Consider b random variables {X;}?_, such that V;(X;) = o
® Then it holds that V,(3 ZXZ) = %2

55

Effect of Mini Batching

e Consider b random variables {X;}?_, such that V;(X;) = o
® Then it holds that V,(3 ZXZ) = %2

® So

of iterations = (’)(ﬁ log (%))

55

Effect of Mini Batching

Consider b random variables {X;}?_; such that V;(X;) = ¢*
Then it holds that V;(} ZXZ) = %2

® So
of iterations = O(,5 log (1))
® But each iteration requires b oracle calls: oracle complexity still same

55

Effect of Mini Batching

Consider b random variables {X;}?_; such that V;(X;) = ¢*
Then it holds that V;(} ZXZ) = %2

® So

of iterations = (’)(ﬁ log (%))

But each iteration requires b oracle calls: oracle complexity still same

In practice: lesser wall-clock time if gradients can be calculated in parallel

55

Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 51) = f(Xa fi)*ajx

so that the overall objective remains the same, i.e.,

N

O(x) =% > f(x&)—al x = F(x)

i=1

provided that Zai = 0.

)

56

Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 51) = f(Xa fi)*ajx

so that the overall objective remains the same, i.e.,

N
O(x) =% ¥ f(x,&)-a] x = F(x)
=1
provided that Zai = 0.

e Note that Vo(x, &) = V(x, &)—a

56

Intuition: Shifted SGD

® Consider the loss functions

¢(Xa 52) = f(Xa 51)7aLTX
so that the overall objective remains the same, i.e.,

N
o(x) = 43 flx&)-al x = F(x)
3=l

provided that Zai = 0.

e Note that Vo(x, &) = V(x, &)—a

® Recall that SGD performance depends on variance at x*

Vi, [IVF(x*, &)1 < 0

56

Intuition: Shifted SGD

Shifted gradient

v¢(xa gL) - Vf(X, ‘Ei)_ai

® Goal: select a; so that V;, [Vo(x*,&;,)] is small

57

Intuition: Shifted SGD

Shifted gradient

v¢(xa gL) - Vf(X, ‘Ei)_ai

® Goal: select a; so that V;, [Vo(x*,&;,)] is small
® Hypothetically, V;, [Vo(x*,&;,)] = 0 requires

a; = vf(x*7£i)

57

Intuition: Shifted SGD

Shifted gradient

Vo(x, &) = VI(x,&)—a

® Goal: select a; so that V;, [Vo(x*,&;,)] is small
® Hypothetically, V;, [Vo(x*,&;,)] = 0 requires

a; = vf(x*7£i)

® Not practical as x* unknown

57

Intuition: Shifted SGD

Shifted gradient

Vo(x, &) = VI(x,&)—a

Goal: select a; so that V;, [Vo(x*,&;,)] is small
Hypothetically, V;, [Vo(x*, &,)] = 0 requires

a; = vf(x*7£i)

Not practical as x* unknown

Clue: availability of estimates of V f(x*,&;) can help!

57

Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]

58

Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]

® Suppose the unbiased gradient approximation g; satisfies:

E¢[||g:l*] < 2ADp(x¢,x*) + Bo}
Et[UtJrl] (1= p)oi +2CDp(x¢, x¥)

where A, B, C, 0?, and p > 0 are some constants (depend on L, p, N) and Eq[-]
is expectation with respect to the random data index at iteration ¢

58

Unified Theory of Gradient Approximation

® A unified approach to approximating gradients [Gorbunov et al., 2019]

® Suppose the unbiased gradient approximation g; satisfies:

E¢[||g:l*] < 2ADp(x¢,x*) + Bo}
Et[UtJrl] (1 - p)oi 4+ 2CDp(x,x¥)

where A, B, C, 0?, and p > 0 are some constants (depend on L, p, N) and Eq[-]
is expectation with respect to the random data index at iteration ¢

Lemma (Simplified version of [Gorbunov et al., 2019])
The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 750,11 Bo

where By depends only on the initialization.

58

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.

59

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.

Proof: Step 1: Expand the squares

%t 41 — X*HZ = |lx¢ —x* — 77gtH2

= ||x¢ — X*”Q — 2n(x; — x*, &) + 0 HgtH2

59

Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])
The following rate result holds:

2 . 2
Elllxr — x*||I*) < (1 — § min{ 57450, 1})" Bo

where By depends only on the initialization.

Proof: Step 1: Expand the squares and use unbiased property E;[g;] = VF(x;):

%t 41 — X*HZ = |lxt —x* — 77gtH2
= ||x¢ — X*”Q — 2n(x; — x*, &) + 0 HgtH2
= Ey[|lxi1 — x*|1°] = [lxe — x*|% — 2n(x¢ — x*, VF(x0)) + n°Ee||ge]|]

59

Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]

60

Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]
< (1-np) |Ixe — x*||* = 20D p(xe, x*) + 0°Ey[||ge])?]

Step 2: Use Strong Convexity
Dp(x¢,x*) + Dp(x*,x¢) =
(x¢ —x*, VF(x1)) > p|lx = y|?

60

Variance Reduced SGD: Proof

Eef|[xe41 — x*|°] =[x — x*||° — 2n(x¢ — x*, VF(xs)) + n°Ee[||g¢])’]
< (1-np) |Ixe — x*||* = 20D p(xe, x*) + 0°Ey[|ge])?]

Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eqlllxe+1 — x[1%] < (1 = mpe) e = x*||* + 20 (An — 1) D (x4, x*) + BriPo}

60

Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eqlllxe+1 — x[1%] < (1 = mpe) e = x*||* + 20 (An — 1) D (x4, x*) + BriPo}
ZBr/ ET[[+1]< QBI/ (1 -) + QBI ZCDF‘(Xf 5)

60

Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eelllxe41 — x*|*] < (1 = np) lIxe — x*1|* + 20 (An — 1) Dp(x¢, X*) + Bn’o7
+) ZBU Et[o 1+1]< QB’/ (1— P)UL + QB’ 2CDp(xt,x%)

B
Eflxe1 — x*||* + 2 pn 0741]

< (1= pm) llxy = x| + (1= §) 22202 4+ 20 (42222€ _ 1) D (x;,)

60

Variance Reduced SGD: Proof

Eyfllxe+1 — xM[*) = llxe = x*[1? = 2n(x; — x*, VF (1)) + 7B 2]
< (1=np) e = x*|1* = 20D (¢, %) + 0?Eelge]1%]
Step 3: Use assumed bounds Eq[||g:||*] < 24Dr(x¢,x*) + Bo?

Eelllxe41 — x*|*] < (1 = np) lIxe — x*1|* + 20 (An — 1) Dp(x¢, X*) + Bn’o7
+) ZBU Et[o 1+1]< QB’/ (1— P)UL + QB’ 2CDp(xt,x%)

nN=g—b—
1= Ap+2BC J

B
Eflxe1 — x*||* + 2 pn 0741]

A 0
< (1= pm) llxy = x| + (1= §) 22202 4+ 20 (42225€ — 1) D,)

60

Variance Reduced SGD: Proof

Take full expectation

2 | 2Bnp? . 2 | 2Bnp® 2
Eflxe1 — x| + 22202, 1] < (1 - min{ 50, §3) Ellx: - x*|* + 2207

61

Variance Reduced SGD: Proof

Take full expectation and apply recursively

2 2Bn? : 2 2Bn?
Efllxi1 - x*|” + 2202, < (1 - min{ 457, §}) Elllx, — x*|* + 2227

. t 2
< (1 — min{Hze, g}) E[[|xo — x*||* + 23%0(2)}

61

Variance Reduced SGD: Proof

Take full expectation and apply recursively

”2 2Bn% 2 2Bn% 2

. 2
+ 2228521 < (1 - min{ 857 §}) Elllx — x*|” + 22207

Efllxt1 —x*

. t 2
< (1 — min{Hze, g}) E[[|xo — x*||* + 23%0(2)}

Equivalently, to get E[||x741 — x*||*] < € needs

T =

1 1
log () L loe(e)
] 1 :) P min{ £~ £
— log = mln{m, 5} AP+QBC7 2

61

@ Variance-Reduced SGD: Moderate N
SAGA and SVRG

62

SAGA

Pick i; at random from {1,2,..., N}
hi J # it

b o
vf(xta élt) J=u

+1 =

P CR by

63

SAGA

Pick i; at random from {1,2,..., N}

t+1 — . .
vf(xta élt) J=u
=h¥ , —h¥*+— Z hi
N
1 7
= ht
bow W Y

63

SAGA Approximation is Unbiased

Unbiased? E;, [g] = E;, [hétﬂ} —E;, [hﬂ + % ZN: h;

64

SAGA Approximation is Unbiased

B, g = B,] [+ 4 3

= VF(xy)

E;, [Vf(xt,&,)] = VF(xt) J

64

SAGA Approximation is Unbiased

64

SAGA Approximation is Unbiased

B, g = B,] [+ 4 3

s
Il
_.

= VF(x)

64

SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write

B = V(%0 i) -V (X", &) + VI, &) — Bt — Ej, |Vf(x*, ;) — bi]

65

SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write

gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft - Ei/, {Vf(x*, EU) - h;‘f}
Eit [Y}
]

E[|[X +Y — E[Y]||"] < 2E[|X||") + 2E[|IY|*] |

= X + Y ~

B [lel] < 28, (1900 60) - V0,)IF] + 28, |

hi' — Vf(x*,&,)

65

SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

B, [lgdl?] < 2B, (V76 &) — VA6 €0)I17] + 28, [b — Vf(x*,&)

2
I

N N
=2 IVI(xe. &) = VI)P+ 2D ||hi - VxS &)
1=1 i=1

65

SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

B, [lgdl?] < 2B, (V76 &) — VA6 €0)I17] + 28, [b — Vf(x*,&)

2
I

N N
=2 IVI(xe. &) = VI)P+ 2D ||hi - VxS &)
=il =il

< 4L.DF(X1§,X*) + 20152
L-smoothness
o5 IV F(x1,6) — V&)1 <
%, &) — F(x*,6) — (V" &), % — x°)

65

SAGA Approximation: Variance

Since VF(x*) = 0, add and subtract V f(x*,§;,) to write
gt = vf(xt-/ giz,)_vf(x*ygiz) + Vf(X*v‘fit) - hfft —E;, {Vf(x*, EU) - h;‘f}
= X <F Y - E;, [Y]
]

hi' — Vf(x*,&,)

B [lel] < 28, 19505 60) - VA0, 6)17] + 28, |

Z

N
= % Z va(XI‘/SY) - Vf(X*’gi)HZ + % Z Hhilf - vf(x*7§Z)H2
=1

=1
< ALDp(x;,x*) + 207

A=2L B=2 J

65

SAGA Approximation: o?

Recall that

)

2=

h! j # iy with prob. (1 —
1

hj
' Vf(x1,&,) = ir with prob.

+1 —

66

SAGA Approximation: o?

Recall that

. h j # iy with prob. (1— %)
Vf(x¢,&,) J =it with prob. %

N . 2
=& [<1 —) |[pd = Vi)|+ R 19 Ge) - wo«tmnﬂ
< (1 = %) ol + %Dp(xt,x*)

o IV F(xe, &) — V(x4 &)|° <
f(x,&) — f(x*,&) — (Vf(x*,&),x —x5)

L-smoothness
I 66

SAGA Approximation: o?

Recall that

h{ j # i with prob. (1 _ %)
Vf(x¢,&,) J =it with prob. %

j=1
N , 2

=4 [(1 — %) bl - vree)| + 195 &) = VI,)1
j=1

< (1 — %) 0? + %Dp(xt,x*)

66

SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

(@) (max {N, %} log (%))

67

SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

@ (max {N, %} log (%))
Algorithm Oracle Complexity Storage
GD N x £ x log() d
SGD 1 x ﬁ X % d
sAGA | max{N, L} x log(L) | dN

67

SAGA: Summary

Plugging in A=2L, B=2, C = 2, and p = & (ignoring constants)

@ (max {N, %} log (%))

Algorithm Oracle Complexity Storage
GD N x £ x log() d
SGD 1 x ﬁ X % d
sAGA | max{N, L} x log(L) | dN

Improves over SGD when N is not too large but high storage

67

Loopless SVRG

® Consider the loopless SVRG proposed in [Kovalev et al., 2019]

68

Loopless SVRG

® Consider the loopless SVRG proposed in [Kovalev et al., 2019]
® A “loopless” modification of SVRG [Johnson and Zhang, 2013]

68

Loopless SVRG

® Consider the loopless SVRG proposed in [Kovalev et al., 2019]
® A “loopless” modification of SVRG [Johnson and Zhang, 2013]
® Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 =] 1
yt+ with prob. 1 — &

68

Loopless SVRG

® Consider the loopless SVRG proposed in [Kovalev et al., 2019]
® A “loopless” modification of SVRG [Johnson and Zhang, 2013]
® Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 =] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

68

Loopless SVRG

Consider the loopless SVRG proposed in [Kovalev et al., 2019]
A “loopless” modification of SVRG [Johnson and Zhang, 2013]
Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 =] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

Unbiased gradient

Eit [gt} = E’it [vf(xtv élt)] - Eiz [Vf(Yta fu)] + VF(Yt)

68

Loopless SVRG

Consider the loopless SVRG proposed in [Kovalev et al., 2019]
A “loopless” modification of SVRG [Johnson and Zhang, 2013]
Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 =] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

Unbiased gradient

Eit [gt} = E’it [Vf(Xt, glt)] - Eit [Vf<Yta Elf)] + VF(yt)
= VF(x;) — VF(yt) + VE(y)

68

Loopless SVRG

Consider the loopless SVRG proposed in [Kovalev et al., 2019]
A “loopless” modification of SVRG [Johnson and Zhang, 2013]
Pick i; at random from {1,2,..., N} and set

g = Vf(x,&,) — VIye &)+ VE(y)

x; with prob. 4 and calculate VF(x;)

Yi+1 =] 1
yt+ with prob. 1 — &

® On average, 3 gradients evaluated per iteration

Unbiased gradient

Eit [gt} = E’it [vf(xtv élt)] - Eiz [Vf(Yta fu)] + VF(Yt)
= VF(xy)

68

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

gt = Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - vf(yff fi/)}
= X + Y — E;, [Y]

75

69

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

gt = Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - v.f(yfa fi/)}
= X + Y — E;, [Y]

B, [llell?] < 25, [IVF6a &) — VF6€)I12] + 285, [I9F (v, &) — V10,601

E[|IX +Y — E[Y]||"] < 2E[|X||") + 2E[|IY|*] |

69

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

= Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - v.f(yfa fi/)}
- X + Y — E,Y)

Ey, |[lgl’] < 2B, [Hw<xt,a,> = VO &DIP] + 2B, [IVF e &) — VFG)]

N N
R 2 IVFxe &) = VEES 7+ F D IIVF(ye &) — VA &)
=il

i=1

69

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

gt = Vf(Xt, &t)_vf(x*v 571‘) + Vf(X*, glt) - vf(ylfv flt) - E’f/, [V,f(X*: ffi,/,) - v.f(yfa fi/)}
= X + Y — E;, [Y]

B, [ledl®] < 2E:, [IV5(xt, &) = VFG6)I] + 2B, IV (30, 6) — VI, €)1

N N
= F Y IV &) = VI)12+ % DIV Iy &) — V&)

=l i=1
< 4LDp(xi,x") b2
L-smoothness
o IV F(x1,6) — VI &)I17 <
F, &) — Fx*,6) — (VX"), % — x°)

69

Loopless SVRG: Approximation Properties

As in SAGA, add and subtract V f(x*,§;,) to write

= Vf(Xt, fit)—Vf(X*, 571‘) + Vf(X*, gzt) - vf(ytv flt) - Ef/, [V.fi(X*a f'i,/,) - v.f(yfa fi/)}
- X + Y — E,Y)

Ey, |[lgl’] < 2B, [Hw<xt,a,> = VO &DIP] + 2B, [IVF e &) — VFG)]
N N
R 2 IVFxe &) = VEES 7+ F D IIVF(ye &) — VA &)
i=1

i=1
< ALDp (x4, x*) + 207

69

Loopless SVRG: o7}

Recall that

y:+ with prob. (1)
Yi+1 =) 1
x; with prob. & (calculate VF'(x;)

70

Loopless SVRG: o7

Recall that

{yt with prob. (1— %)
Yi+1 =

x¢ with prob. % (calculate VF(x;)

N
Ei [0711] = & DBV (yer1,€5) = V(xS &)II7)

7=1
N

=3 [(1- 2) IVF &) - VIS E)IP + % IV Fx0,65) — VI,)17
j=1

< (1 = %) o? + %Dp(xt,x*)

L-smoothness

o IV F(xe, &) — V(x4 &)|° <
Fx,&) — F(x*, &) — (VF(x" &), x —

X*> 70

Loopless SVRG: o7

Recall that

{yt with prob. (1)
Yi+1 =

x¢ with prob. % (calculate VF(x;)

N
Ei [071] = & ZE[HVf(yHl,ﬁj) — V(x5

N
(1= 2) IVF5:6) = VI + & 195 (i, €5) = V()17

< (1-%)o7 + 2 Dr (x4, x¥)

70

Loopless SVRG: Summary

Algorithm Oracle Complexity Storage
GD N x L x log(y) d
SGD 1ox & X 1 d
sAGA | max{N, L} x log(l) | dN
LSVRG | max{N,E} x log(1)| d

71

Loopless SVRG: Summary

Algorithm Oracle Complexity Storage
GD N x L x log(y) d
SGD 1 x % X % d

o=

sAGA | max{N, L} x log(l) | dN

LSVRG | max{N,E} x log(1)| d

Loopless SVRG has almost same number of gradient calculations as SAGA but requires

same storage as SGD

71

@ Variance-Reduced SGD: Moderate N

State-of-the-art and Open Problems

72

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term

73

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term
® But acceleration has not been achieved for classical SGD

73

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term
® But acceleration has not been achieved for classical SGD
® Indeed, momentum SGD is prone to error accumulation [Konevceny et al., 2015]

73

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term

® But acceleration has not been achieved for classical SGD

® Indeed, momentum SGD is prone to error accumulation [Konevceny et al., 2015]
® But can it work for variance-reduced algorithms?

73

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term

® But acceleration has not been achieved for classical SGD

® Indeed, momentum SGD is prone to error accumulation [Konevceny et al., 2015]
® But can it work for variance-reduced algorithms?

® Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

73

Accelerated Variants

Accelerated GD proposed by Nesterov in 1983: uses a momentum term

But acceleration has not been achieved for classical SGD

Indeed, momentum SGD is prone to error accumulation [Konevcny et al., 2015]
® But can it work for variance-reduced algorithms?

Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
Several variants since then, active area of research

73

Accelerated Variants

® Accelerated GD proposed by Nesterov in 1983: uses a momentum term

But acceleration has not been achieved for classical SGD

Indeed, momentum SGD is prone to error accumulation [Konevcny et al., 2015]
® But can it work for variance-reduced algorithms?

Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]
Several variants since then, active area of research

Algorithm Oracle Complexity Storage
GD N x L < log(y) d
Accelerated GD N x ;% x log (%) d
SGD 1 % X % d
L-SVRG max{ L X og(h) | d
Accelerated SVRG | (N + /%) x 1og(l)| 4

73

Accelerated Variants: Smooth + Convex

Algorithm Oracle Complexity

GD N x L x

Accelerated GD N x VL x ﬁ
1

62

1

€

SGD 1 x L X
SAGA (N + L) X
SVRG+ Nlog (%) + £

Accelerated SVRG N log (%) 4 ¥

74

Non-Convex Finite Sum: SPIDER

e Moderately large N < e 2

75

Non-Convex Finite Sum: SPIDER

e Moderately large N < e 2

Algorithm Oracle Complexity
GD N x e
SGD 1 X e 2
SVRG/SAGA N3 % !
SPIDER/SPIDERBoost | N*/2 x ¢!

75

Non-Convex Finite Sum: SPIDER

e Moderately large N < e 2

Algorithm Oracle Complexity
GD N x e
SGD 1 X e 2
SVRG/SAGA N3 % !
SPIDER/SPIDERBoost | N*/2 x ¢!

¢ SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in
terms of NV and €

® Open problem: Adaptive step-size variant of SPIDER?

75

Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

76

Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

e SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

1

gradients every ¢ samples: mega batches hard to tune

76

Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

e SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

1

gradients every ¢ samples: mega batches hard to tune

® STORM uses momentum + adaptive step-size to achieve optimal rate using single
loop

76

Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

e SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

1

gradients every ¢ samples: mega batches hard to tune

® STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop
Algorithm Oracle Complexity
SGD 2
SVRG+ e%/3
SPIDER/SPIDERBoost e 3/2
STORM e 3/2

76

Non-Convex Online: STORM

® SAGA/SVRG not meant for large N

e SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

1

gradients every ¢ samples: mega batches hard to tune

® STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop
Algorithm Oracle Complexity
SGD 2
SVRG+ e%/3
SPIDER/SPIDERBoost e 3/2
STORM e 3/2

® Open problem: can STORM to handle X, regularizers, etc?

76

Distributed Setting

Consider the problem

Data points {¢¥} | available only at k-th node

Central server aids in parallelizing: K nodes can offer K-fold speedup in
wall-clock time
State-of-the-art: Parallel Restarted SPIDER matches centralized O(e=3/2) for

online non-convex

Open problems: Distributed version of STORM? Accelerated variants?

77

Open Problem: Decentralized Setting

® Again consider the problem

78

Open Problem: Decentralized Setting

® Again consider the problem

® No central server, only communication between peers is allowed

78

Open Problem: Decentralized Setting

® Again consider the problem

® No central server, only communication between peers is allowed

e All existing approaches are either suboptimal or cannot handle X

78

Open Problem: Decentralized Setting

® Again consider the problem

No central server, only communication between peers is allowed

All existing approaches are either suboptimal or cannot handle X

® For non-convex, optimal O(¢~%/2) achieved in [Sun et al., 2019)

78

Open Problem: Decentralized Setting

® Again consider the problem

No central server, only communication between peers is allowed

All existing approaches are either suboptimal or cannot handle X

® For non-convex, optimal O(¢~%/2) achieved in [Sun et al., 2019)

Open problem: can accelerated rates be obtained for convex decentralized case?

78

High-dimensional problems: large d

79

® When d is large, accessing VF(x) becomes difficult

80

® When d is large, accessing VF(x) becomes difficult
® E.g.: in matrix completion, VF(X) € R™*" may be unwieldy (d = mn)

80

® When d is large, accessing VF(x) becomes difficult
® E.g.: in matrix completion, VF(X) € R™*" may be unwieldy (d = mn)
® But a few coordinates of VF(X) may be available

80

When d is large, accessing VF'(x) becomes difficult
E.g.: in matrix completion, VF(X) € R™*" may be unwieldy (d = mn)
But a few coordinates of VF(X) may be available

Motivates coordinate descent and sketched gradient methods

80

@ High-dimensional problems: large d

Gradient sketching

81

Sketched Gradient Descent

e Consider recently proposed SEGA [Hanzely et al., 2018]

82

Sketched Gradient Descent

e Consider recently proposed SEGA [Hanzely et al., 2018]
® Assumes availability of PV F(x) where P € RP*? where p < d

82

Sketched Gradient Descent

e Consider recently proposed SEGA [Hanzely et al., 2018]
® Assumes availability of PV F(x) where P € RP*? where p < d

® \We look at the special case of p =1 and
P=e/=100 ... 1 ... 00

where i, is randomly selected from {1,..., N}

82

Sketched Gradient Descent

Consider recently proposed SEGA [Hanzely et al., 2018]
® Assumes availability of PV F(x) where P € RP*? where p < d

We look at the special case of p =1 and
P=e/=100 ... 1 ... 00

where i, is randomly selected from {1,..., N}

Sketched gradient is not an unbiased estimator!

82

SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

83

SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

® Starting with h; = 0, we have

[VE); 7=

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it

83

SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

® Starting with h; = 0, we have

[VE(x¢)]; j=1i

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it

® Maintain two d x 1 vectors, but update only 1 coordinate at a time

83

SEGA: single coordinate update

® Unbiased gradient estimate must be maintained

® Starting with h; = 0, we have

[VE); 7=

h{ﬂ = <
hi JF# i
dVF(x); + (1= d)h j=1i
[gt]j = j . .
by J# it

® Maintain two d x 1 vectors, but update only 1 coordinate at a time

® Can we get GD-like performance with such sporadic updates?

83

SEGA: Unbiased Gradient Estimate

® | et us write in compact form:

ht_|_1 = ht + eitQ(VF(Xt) — ht)
g = h; + de;, (VF(x;) — hy)

where ® denotes element-wise product

84

SEGA: Unbiased Gradient Estimate

® | et us write in compact form:

ht_|_1 = ht + eitG(VF(Xt) — ht)
g = h; + de;, O(VF(x;) — hy)

where ® denotes element-wise product

1
® Note that E[e;,| = 7

84

SEGA: Unbiased Gradient Estimate

® | et us write in compact form:

ht_|_1 = ht + eitG(VF(Xt) — ht)
g = h; + de;, O(VF(x;) — hy)

where ® denotes element-wise product

1
® Note that E[e;,| = 7

® Unbiased gradient:

E;, [gt] = hy + dE;, [e;,] © (VF(xt) — ht) = VF(xy)

84

SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

g: = d(e;, © VF(x¢))—de;, © hy + E;, [de;, © hy]
= X + Y - E’ff [Y}

85

SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

g = d(e;, © VF(x¢))—de;, ® hy + E;, [de;, © hy]
= X + Y - EY} [Y}

E;, [lgl?] < 2%y, [lei, © VE(xo)|’] +24°E:, |lles, @ h?]

E[|IX +Y — E[Y]||"] < 2E[|X||") + 2E[|IY|*] |

85

SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)
g: = d(e;, © VF(x¢))—de;, © hy + E;, [de;, © hy]
= X + Y - E’ff [Y}
Ei, |lgil’] < 2%, |llei, © VF(x)|?| + 24K, [llew, © h?]
= 24|V F ()| + 2d|h|

85

SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

gt — d(eit ® VF(Xt))—deit ®h + E,j, [de,,-, ® hf}

= X + Y - Eif [Y}

Ei, |lgil’] < 2%, |llei, © VF(x)|?| + 24K, [llew, © h?]
= 2| VF()|’ + 2d|h?
< 4dLDp (x4, x*) + 2do?

L-smoothness
& IVF(x;) — VE(xY)|? <
F(x) — F(x*) = Dp(x¢,x")

85

SEGA: Approximation Properties

Proceeding as earlier (since VF(x*) = 0)

g = d(e;, © VF(x¢))—de;, ® hy + E;, [de;, © hy]

= X + Y - EY} [Y}

Ei, |lgil’] < 2%, |llei, © VF(x)|?| + 24K, [llew, © h?]
= 2| VF()|’ + 2d|h?
< 4dLDp (x4, x*) + 2do?

A:QdL,B:2dJ

85

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so

Ei, [021] = Ei, |IBer]®] = i, [Ih: + e;, © (VF(x:) — bo)l?]

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [071] = B, [IIeal] = i, [+ es, © (VF(x) — o)

2
— [H —e;€;, hH—eZte VF(xt)H]

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [071] = B, [IIeal] = i, [+ es, © (VF(x) — o)

=, [H —e;,€ Zt)ht+ezte VF(xy H]

~ B [e | + i il © (VRG]

T T
Tt [(I elten)elteu} =

E;
T T T
E;, [eLt ,f} —E;, [eiteiteiteit} =0

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [071] = B, [IIeal] = i, [+ es, © (VF(x) — o)

=, [H — €€, hH—eZte VF(xy H]
T 2 2
—Ei, |[|@- eqeDbe|| | +Es [lles © (VF ()]

_ (1 - jl) E;,)] + SV F (e

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [021] = Ei, |IBerl®] = i, [Ihe + e;, © (VF(x:) — bo)l?]
=, [H —e;€e Zt)ht+ezte VF(x; H]
T 2 2
Ei |[[@- eqeDbe|| | +Es, [lle:, © (VF(x)I?]

= (1-3) B [ima?] + J1vF G2

(1) LDF(Xta x")

L-smoothness
o IVF(x:)||* < Dp(xq, x*) J

86

SEGA Approximation: o2

Recall that hy11 = h; +e;, ® (VF(x;) — hy), so
Ei, [021] = Ei, |IBerl®] = i, [Ihe + e;, © (VF(x:) — bo)l?]
=, [H —e;€e Zt)ht+ezte VF(x; H]
T 2 2
E, |[|@- e@-temhtH +E;, [lei, © (VF(x2))]]

:(1) [Ime)?] 4|va,)“
)7

1
S (1 g Oy + 7DF Xta)

86

SEGA Summary

® GD uses d gradient entries per iteration

87

SEGA Summary

® GD uses d gradient entries per iteration

® SEGA uses 1 gradient entry per iteration

87

SEGA Summary

® GD uses d gradient entries per iteration
® SEGA uses 1 gradient entry per iteration

® Equivalently, GD incurs dx per iteration cost

87

SEGA Summary

GD uses d gradient entries per iteration

SEGA uses 1 gradient entry per iteration

Equivalently, GD incurs dx per iteration cost

Define oracle complexity = dx number of gradients required to achieve e-accuracy

87

SEGA Summary

GD uses d gradient entries per iteration

SEGA uses 1 gradient entry per iteration

Equivalently, GD incurs dx per iteration cost

Define oracle complexity = dx number of gradients required to achieve e-accuracy

Algorithm Oracle Complexity Per-iteration cost
GD d x L x log(y) d
SEGA d x L x log(7) 1

SEGA is competitive with GD even while looking at one entry at a time!

87

@ High-dimensional problems: large d

Hogwild!

88

Large N and d

® large N = cannot compute even one entry exactly

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient

® | arge-scale matrix completion

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe

win |12 - LRT [} + 4 LI + £ IRI

where L € RY"*7 and R € RNex"

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe

win |12 - LRT [} + 4 LI + £ IRI

where L € RY"*7 and R € RNex"
® |Low-rank assumption = r < N, N,.

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe
. T2 | M 2 K 2
rII,nl?Itl HZ — LR HF + 5 ||LHF + 5 HR”F
where L € RV"*" and R € RN*"

® |Low-rank assumption = r < N, N,.
® Number of observations N = N,.N, is extremely large

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe
. T2 | M 2 K 2
r1111711:1t1’|Z7LR HFJF§||LHF+§HR”F

where L € RY"*7 and R € RNex"
® |Low-rank assumption = r < N, N,.
® Number of observations N = N,.N, is extremely large
® Number of variables d = (N, + N,.)r is also very large

89

Large N and d

® large N = cannot compute even one entry exactly

® |arge d = cannot compute full stochastic gradient
® | arge-scale matrix completion

® QObservations Z € RV-xNe
. T2 | M 2 K 2
r1111711:1t1||Z7LR HFJF§||LHF+§HR”F

where L € RY"*7 and R € RNex"
® |Low-rank assumption = r < N, N,.
® Number of observations N = N,.N, is extremely large
® Number of variables d = (N, + N,.)r is also very large

e Cannot load the variables or observations into the RAM

89

Curse of Parallelization: Beyond Oracle Complexity

® SGD is inherently serial

90

Curse of Parallelization: Beyond Oracle Complexity

® SGD is inherently serial

e Consider system with m cores or m distributed servers

90

Curse of Parallelization: Beyond Oracle Complexity

® SGD is inherently serial

e Consider system with m cores or m distributed servers
2
0 . g
® SGD achives € accuracy in O(—) oracle calls
€

90

Curse of Parallelization: Beyond Oracle Complexity

SGD is inherently serial

Consider system with m cores or m distributed servers
2
0 . g
SGD achives € accuracy in O(—) oracle calls
€

® To use multi-core systems, one must parallelize, e.g., using minibatch
n
m-SGD Xt-l—l = Xt — E Z Vf(Xt,gj)
JEL:

where m = |Z;| stochastic gradients are computed in parallel

90

Curse of Parallelization: Beyond Oracle Complexity

SGD is inherently serial

Consider system with m cores or m distributed servers
2
0 . g
SGD achives € accuracy in O(—) oracle calls
€

® To use multi-core systems, one must parallelize, e.g., using minibatch
n
m-SGD Xt-l—l = Xt — E Z Vf(Xt,gj)
JEL:

where m = |Z;| stochastic gradients are computed in parallel

What is the wall-clock time?

90

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then
SGD: Total wall-clock time = t, x 0% /e

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)
m-SGD: Total wall-clock time = (t, + (m + 1)t,.) x 0 /me =~ O(a>/¢)

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)
m-SGD: Total wall-clock time = (t, + (m + 1)t,.) x 0 /me =~ O(a>/¢)

® Gains due to parallelization offset by the limited memory throughput

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)
m-SGD: Total wall-clock time = (t, + (m + 1)t,.) x 0 /me =~ O(a>/¢)

® Gains due to parallelization offset by the limited memory throughput

® Synchronization requirement cause idling of cores

91

Curse of Parallelization: Wall Clock Time

® Let t, = time to calculate Vf(x,£;) and ¢, = time to read/write x;
® If t, < t4, then

SGD: Total wall-clock time = t, x 0% /e
m-SGD: Total wall-clock time = t, x o /me

e If t, =~ t,, writes are not concurrent
SGD: Total wall-clock time = (¢, + 2t,.) x /e = O(c?/e)
m-SGD: Total wall-clock time = (t, + (m + 1)t,.) x 0 /me =~ O(a>/¢)

® Gains due to parallelization offset by the limited memory throughput
® Synchronization requirement cause idling of cores

® Memory is locked while being written

91

Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]

x* = arg m}in F(x) := %Z f(x,&)

where & C {1,...,n} is an hyperedge

92

Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]

x* = arg m}in F(x) := %Z f(x,&)

where & C {1,...,n} is an hyperedge
e Eg, & =1{1,3,4} and f(x,&;) depends on x1, x3, 24

92

Sparse Problem Structure

® Consider the problem [Recht et al., 2011]

N
x* :argmlnF Z x,&;)
where & C {1,...,n} is an hyperedge
® Eg., & =1{1,3,4} and f(x,&) depends on z1, z3, x4
® Sparsity: |&] < d
X FGED f(.862)
6D X2
£ w
fCo8n) T
Xa—1
Xq G 4éN)

Figure 3: (a) Bipartite graph (b) conflict graph representation

92

Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]
| X
* o . .
=g £ () = 0 30569
1=

where & C {1,...,n} is an hyperedge
E'g'v é-’L = {]‘7374} and f(X’é-’L) depends on xlr xS, ./E4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;

92

Sparse Problem Structure

¢ Consider the problem [Recht et al., 2011]
| X
=g £ () = 0 30569
1=

where & C {1,...,n} is an hyperedge
E.g., & ={1,3,4} and f(x,&;) depends on 1, x3, x4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;

So only a few entries of V f(x,&;) are non-zero

92

Sparse Problem Structure

Consider the problem [Recht et al., 2011]

x* = arg m}in F(x) := %Z f(x,&)

where & C {1,...,n} is an hyperedge
E.g., & ={1,3,4} and f(x,&;) depends on 1, x3, x4
Sparsity: |&;]| < d

Function f: R" x £ — R depends only on the subset of variables in &;

So only a few entries of V f(x,&;) are non-zero
Indeed, [Vf(x,&)]j =0 for all j ¢ fz

92

® Go hog wild: read and write x without locking

93

Hogwild!

® Go hog wild: read and write x without locking

® Fach core does the following:

without synchronizing with other cores

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:

® reads x from the memory;

without synchronizing with other cores

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:

® reads x from the memory;
® evaluates Vf(x,§);

without synchronizing with other cores

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:

® reads x from the memory;
® evaluates Vf(x,§);
® updates x; and

without synchronizing with other cores

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:

® reads x from the memory;
evaluates V f(x, §);
® updates x; and

® writes X to memory one entry at a time

without synchronizing with other cores

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:

® reads x from the memory;
evaluates V f(x, §);
® updates x; and

® writes X to memory one entry at a time
without synchronizing with other cores

® This will lead to inconsistent reads and overwrites: recipe for disaster?

93

Hogwild!

® Go hog wild: read and write x without locking
® Fach core does the following:
® reads x from the memory;
® evaluates Vf(x,§);
® updates x; and
® writes X to memory one entry at a time
without synchronizing with other cores
® This will lead to inconsistent reads and overwrites: recipe for disaster?
e Key idea: collisions rare if £ N &; = 0 with high probability

93

Hogwild Algorithm

® Define [x]¢ € R¥1 to contain only those entries that are in £, i.e.,

0 j¢¢
zj je&

(X]e); =

94

Hogwild Algorithm

® Define [x]¢ € R¥1 to contain only those entries that are in £, i.e.,

0 j¢¢
zj je&

(X]e); =

® The full algorithm takes the form:

94

Hogwild Algorithm

® Define [x]¢ € R¥1 to contain only those entries that are in £, i.e.,

oy =1° 7%¢

zj jEE&

® The full algorithm takes the form:

Algorithm 3 Hogwild! (at each core, in parallel)

1: repeat

2 Sample an hyperedge &

3 Let [X] = an inconsistent read of [x],
4 Evaluate [u], = —nV f([x]¢, §)

5: for v € £ do:

6 T8y = BBy = Uy

7 end for

8:

until number of edges < T o

Perturbed SGD

e Cannot write Hogwild in classical SGD form

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, u-convex functions f, perturbed SGD satisfies

Ser1 < (L= np)de + nPE[||V £ (e, &)%) + 2nuE[|%: — x¢]|%] + 2nE[(%e — %, V f (x¢, &)}

95

Perturbed SGD

e Cannot write Hogwild in classical SGD form

® |nstead consider perturbed SGD with some random variable &,

Xi+1 = Xt — va(f% 5t)

where X; = x; + n; with noise n; independent of &

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, u-convex functions f, perturbed SGD satisfies

Ser1 < (L= np)de + nPE[||V £ (e, &)%) + 2nuE[|%: — x¢]|%] + 2nE[(%e — %, V f (x¢, &)}

95

Perturbed SGD

e Cannot write Hogwild in classical SGD form

® |nstead consider perturbed SGD with some random variable &,

Xi+1 = Xt — va(f% 5t)

where X; = x; + n; with noise n; independent of &

® Defining &; := E[||x; — x*||], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, u-convex functions f, perturbed SGD satisfies

Ser1 < (L= np)de + nPE[||V £ (e, &)%) + 2nuE[|%: — x¢]|%] + 2nE[(%e — %, V f (x¢, &)}

95

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt,)]

Proof: Expand the optimality gap

1 = X1 = [l =% = 0V f (e, &)
= |t = x*1* = 20(&e = X%, Vf (Re, &) + 17 |V f (R E)II° + 20(Re — x40, V f (R, &)

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt,)]

Proof: Expand the optimality gap and add-subtract (X;, V f(X¢, &))

1 = X1 = [l =% = 0V f (e, &)
= |t = x*[1* = 20(%e = %%, Vf (Re, &) + 17 |V f (R &)1 + 20(%e — x40, V f (R, &)

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt,)]

Proof: Expand the optimality gap and add-subtract (x¢, V f(%¢,&;))

xe1 — xM|* = |lxe —x* =V f (X, &)
= |lxe = x*||” — 2n(&ke — x*, VI (%, &)) + 0?1V f (e, &)|17 + 20(ke — %1, VF (Rt &)
Eufllxer1 — x*)1%] = llx: — x*||* — 2n(& — x*, VF (%)) + n* |V f %z, &)1

+ 2nE(x; — x4, V f (X4, &)

96

Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, p-convex functions f, perturbed SGD satisfies

81 < (1= n)8e + B[V f (oo, €0)11%] + 201E]I Re — %e]1”] + 2nE[(Re — xo, Vf (xt,)]

Proof: Expand the optimality gap and add-subtract (x¢, V f(%¢,&;))

lxer1 — ¥ = llxe —x* = nV £ (R, &)l
= |lx¢ — x| — 2n(%e — X*, V£ (%, &) + n? IV f (e, €)% + 20(Re — %1, Vf (R, &))
Eefllxer1 — x*|%] = % — x*[|” = 2n(%e — x*, VF (%)) + 0° |V £ (%2, &)

+ 2nE(Xs — x¢, V f(Xt,62))

Lemma follows from using u-strong convexity and triangle inequality:
(ke — x* VF (%)) > p[|%e — x*|* > % s = x*[1% = o [l %e = 5]

96

Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge

97

Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge
® | et X; be the contents before ¢-th read

97

Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge
® | et X; be the contents before ¢-th read

® Also, recall that [x]& is an inconsistent read, and define full vector x;:

%] [X¢]y v € & — these are changed
Xtlo =
: [X¢]y v €& & — these remain same as before the read

97

Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge
® | et X; be the contents before ¢-th read

® Also, recall that [x]& is an inconsistent read, and define full vector x;:

%] [X¢]y v € & — these are changed
Xtlo =
: [X¢]y v & & — these remain same as before the read

® x; independent of & (can be relaxed)

97

Hogwild as Perturbed SGD

Let & be the t-th sampled hyperedge

Let X; be the contents before ¢-th read

Also, recall that [x]& is an inconsistent read, and define full vector x;:

%] [X¢]y v € & — these are changed
Xtlo =
: [X¢]y v & & — these remain same as before the read

x; independent of & (can be relaxed)
Bounded gradients: ||f(%,&)|| < M (can be relaxed)

97

Hogwild as Perturbed SGD

® |et & be the t-th sampled hyperedge
® | et X; be the contents before ¢-th read

® Also, recall that [x]& is an inconsistent read, and define full vector x;:

%] [X¢]y v € & — these are changed
Xtlo =
: [X¢]y v & & — these remain same as before the read

® x; independent of & (can be relaxed)
® Bounded gradients: || f(x,£)|| < M (can be relaxed)
o Key idea: after T" updates are written to the memory:

xr = x1 — NV f(X1,81) —nVf(X2,§2) — ... =V f(Xr-1,ér-1)

or

Xep1 =X — NV f(X¢, &)

97

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph

® Max. number of hyperedges that overlap with a given hyperedge = 7

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7

® 7 =0 implies no overlap (classical SGD)

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

Consider, for instance, times ¢ and j:

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

Consider, for instance, times ¢ and j:
e ifi<jand §&NE =0, Vf(xi,&) written before X, read: contribution of
V f(%i,&;) included into X; and x;

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

Consider, for instance, times ¢ and j:
e ifi<jand §&NE =0, Vf(xi,&) written before X, read: contribution of

V f(%i,&;) included into X; and x;
® Ifi>jand & NE =0, then neither X; nor x; contain any contribution of

V(% &)

98

Hogwild Abstractions: 7 and A

e A = average degree of conflict graph
® Max. number of hyperedges that overlap with a given hyperedge = 7
® 7 =0 implies no overlap (classical SGD)

® 7 can be proxy for number of cores: 7 read-writes in parallel

Consider, for instance, times ¢ and j:
e ifi<jand §&NE =0, Vf(xi,&) written before X, read: contribution of
V f(%i,&;) included into X; and x;
® Ifi>jand & NE =0, then neither X; nor x; contain any contribution of
V(% &)
Edges & N¢; =0if ‘Z—j| >T

98

Hogwild: modeling inconsistent reads

Let S! be diagonal matrix with entries in {—1,0, 1}

Define conflicting edges: Z, :={t —7,t — 7+ 1,...t = 1,t+1,....t + 7}

Then, all possible update orders can be written as

X — X = n Z vaf(fcw §L)

LEL

Models all patterns of possibly partial updates while &; is being processed

99

Hogwild Analysis

Lemma
The following bounds hold:

A
E[|[%: — x:|%] < n*M (27 + 872d>

. . A
E[(%; — x4, V f(X¢, e1))] < 477M275

We use ||V f(%,&)|| < M

E[(%; —%;, V(% &) =0 Y B[SV (X, &), VI (e, &)

LET:

100

Hogwild Analysis

Lemma
The following bounds hold:

A
E[|[%: — x:|%] < n*M (27 + 872d>

. . A
E[(%; — x4, V f(X¢, e1))] < 477M275

We use ||V f(%,&)|| < M

E[(%; —%;, V(% &) =0 Y B[SV (X, &), VI (e, &)

LET:

<MY Prig,né # 0]

100

Hogwild Analysis

Lemma
The following bounds hold:

A
E[|%: — x¢]|*] < n*M (27 + 872d>

) R A
EKXt — x4, V (X4, et)ﬂ < 477M27'*

d
. 2A
We use ||V f(%¢,&)|| <M and Pr(§,N¢& #0) = i
E[(%: — xt, V.f (X, &) =0 Y B[(SIVF (%,), VI (%t)]
LE€T:
<nM?Y Prig.né # 0]
L2A

< apM?r==
< 2pMr—

100

Hogwild Analysis

Since ||Sul|, < |lul], it holds that

E[ll%e — xel|"] = °E[ll) _ SIVf (%, &)%)

LET:

101

Hogwild Analysis

Since ||Sul|, < ||u|] it holds that

E[||%: — x¢1*] = n?E[|| Y _ SV f(%,, &)
LEIf
=12 Y E|SIVFG, &) + 12 Y E[SIVF (%), SLV £ (Re, €))]
LEL: L#K

101

Hogwild Analysis

Since ||Sul|, < |lul], it holds that

E[ll%e — xel|"] = °E[ll) _ SIVf (%, &)%)

LET:

=12 Y E|SIVFG, &) + 12 Y E[SIVF (%), SLV £ (Re, €))]

LEL: L#K

<Y EVIEo P+ 07 Y ElIVF R &)V Ry)l Le, 0]
L L#K

101

Hogwild Analysis

Since ||Sul|, < ||u|] it holds that

E[ll%e — xel|"] = °E[ll) _ SIVf (%, &)%)

LET

=12 Y E|SIVFG, &) + 12 Y E[SIVF (%), SLV £ (Re, €))]

LEL: L#K

<7722E||Vf %, E)I1° + 17 Y E[IVF 0, &) IV F s €l Le, e, 0]
LF#R

<’ M2(271 + 47%Pr¢, N & # 0)) = 2 M%7 (1 4 27(2A/d))

101

Hogwild Analysis

Since ||Sul|, < ||u|] it holds that

E[ll%e — xel|"] = °E[ll) _ SIVf (%, &)%)

LET

=12 Y E|SIVFG, &) + 12 Y E[SIVF (%), SLV £ (Re, €))]

LEL: L#K

< n2ZE||Vf %,)12+ 77) BV G,) IV F Rey &) Le, g, 20]
LF#R

< P M2(271 + 47%Pr€, N & # 0)) = 20 M27(1 4 27(2A/d))
Substituting all bounds,
Sip1 < (1 —np)ds + > M>Cy
where C; = 1+ 87A/d + dnut + 16num?A/d.

101

Hogwild Analysis

Since ||Sul|, < |lul], it holds that

E[ll%e — xel|"] = °E[ll) _ SIVf (%, &)%)

LET
=12 Y E|SIVF(x.,)|+ ;EKSEW(&L, £),SEV f (R, £x))]
LET: LE£RK
<Y BV QP+ 17 Y BV (K IV F Ry)l L, e, 0]
2 LF#R

<PPM? (21 4+ 472Pr €, N & # 0) = 202 M2 (1 4 27(2A/d))
Substituting all bounds,
5t+1 < (1 — T]M)(St + 772MQC1

where C; = 1+ 87A/d + dnut + 16num?A/d.

Yields O(L

—) oracle complexity (same as SGD) provided 7 is not too large
e

101

State-of-the-art for high-dimensional

® Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

102

State-of-the-art for high-dimensional

® Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

® Extensions to non-convex settings with more realistic assumptions
[Cannelli et al., 2019]

102

State-of-the-art for high-dimensional

® Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

® Extensions to non-convex settings with more realistic assumptions
[Cannelli et al., 2019]

® Very large delays [Zhou et al., 2018]

102

State-of-the-art for high-dimensional

Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

® Extensions to non-convex settings with more realistic assumptions
[Cannelli et al., 2019]

® Very large delays [Zhou et al., 2018]

Proximal variants [Zhu et al., 2018]

102

State-of-the-art for high-dimensional

Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of
Hogwild!

® Extensions to non-convex settings with more realistic assumptions
[Cannelli et al., 2019]

® Very large delays [Zhou et al., 2018]

Proximal variants [Zhu et al., 2018]

® Decentralized variants? Skewed sparsity profile?

102

Conclusion J

103

Oracle complexity results for different SGD variants

® |ntuition regarding variance reduction and coordinate descent

When to apply which version?

Unified and simplified proofs (extend to non-strongly convex settings also)

State-of-the-art and open problems

104

References i

[§ Allen-Zhu, Z. (2017).
Katyusha: The first direct acceleration of stochastic gradient methods.
The Journal of Machine Learning Research, 18(1):8194-8244.

[8 Beck, A. (2017).
First-order methods in optimization, volume 25.
SIAM.

[§ Bottou, L., Curtis, F. E., and Nocedal, J. (2018).
Optimization methods for large-scale machine learning.
Siam Review, 60(2):223-311.

105

References ii

[4 Bubeck, S. (2019).

Sebastien Bubeck’s blog: I’'m a bandit.
https://blogs.princeton.edu/imabandit/2018/11/21/
a-short-proof-for-nesterovs-momentum/.

Accessed: 14 July 2019.

[3 Bubeck, S. et al. (2015).
Convex optimization: Algorithms and complexity.
Foundations and Trends in Machine Learning, 8(3-4):231-357.

[§ Cannelli, L., Facchinei, F., Kungurtsev, V., and Scutari, G. (2019).
Asynchronous parallel algorithms for nonconvex optimization.
Mathematical Programming, pages 1-34.

106

https://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/
https://blogs.princeton.edu/imabandit/2018/11/21/a-short-proof-for-nesterovs-momentum/

References iii

[§ Chen, Y. (2019).

Notes on large scale optimization for data science.
http://www.princeton.edu/~yc5/ele522_optimization/lectures.html.
Accessed: 23 June 2019.

[§ Fang, C., Li, C. J., Lin, Z., and Zhang, T. (2018).
Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator.
In Advances in Neural Information Processing Systems, pages 689—699.

[4 Gorbunov, E., Hanzely, F., and Richtarik, P. (2019).
A unified theory of SGD: Variance reduction, sampling, quantization and
coordinate descent.
arXiv preprint arXiv:1905.11261.

107

http://www.princeton.edu/~yc5/ele522_optimization/lectures.html

References iv

[Hanzely, F., Mishchenko, K., and Richtarik, P. (2018).

SEGA: Variance reduction via gradient sketching.

In Advances in Neural Information Processing Systems, pages 2082—2093.
[§ Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance
reduction.

In Advances in neural information processing systems, pages 315-323.

[d Koneveny, J., Liu, J., Richtarik, P., and Takivc, M. (2015).
Mini-batch semi-stochastic gradient descent in the proximal setting.
IEEE Journal of Selected Topics in Signal Processing, 10(2):242-255.

108

References v

[Kovalev, D., Horvéth, S., and Richtérik, P. (2019).
Don’t jump through hoops and remove those loops: SVRG and Katyusha
are better without the outer loop.
arXiv preprint arXiv:1901.08689.

[§ Krizhevsky, A. (2009).
Learning multiple layers of features from tiny images.
Master's thesis, University of Toronto.

[\ Lin, H., Mairal, J., and Harchaoui, Z. (2015).
A universal catalyst for first-order optimization.
In Advances in neural information processing systems, pages 3384-3392.

109

References vi

[§ Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., and Jordan,
M. 1. (2017).
Perturbed iterate analysis for asynchronous stochastic optimization.
SIAM Journal on Optimization, 27(4):2202-2229.

[d Nguyen, L. M., Liu, J., Scheinberg, K., and Takdvc, M. (2017).
Sarah: A novel method for machine learning problems using stochastic
recursive gradient.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 2613-2621.

[§ Recht, B., Re, C., Wright, S., and Niu, F. (2011).
Hogwild: A lock-free approach to parallelizing stochastic gradient descent.
In Advances in neural information processing systems, pages 693—701.

110

References vii

[§ Saunders, M. (2019).
Notes on first-order methods for minimizing smooth functions.
https://web.stanford.edu/class/msande318/notes/
notes-first-order-smooth.pdf.
Accessed: 23 June 2019.

[Sun, H., Lu, S., and Hong, M. (2019).
Improving the sample and communication complexity for decentralized
non-convex optimization: A joint gradient estimation and tracking
approach.
arXiv preprint arXiv:1910.05857.

[4 Vandenberghe, L. (2019).

Optimization methods for large-scale systems.
http://www.seas.ucla.edu/~vandenbe/ee236¢c.html.
Accessed: 14 Aug. 2019.

111

https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
https://web.stanford.edu/class/msande318/notes/notes-first-order-smooth.pdf
http://www.seas.ucla.edu/~vandenbe/ee236c.html

References viii

B Wang, F., Dai, J., Li, M., Chan, W.-c., Kwok, C. C.-h., Leung, S--I., Wu, C,, Li,
W., Yu, W.-c,, Tsang, K.-h., et al. (2016).
Risk assessment model for invasive breast cancer in Hong Kong women.
Medlicine, 95(32).

[Wang, Z., Ji, K., Zhou, Y., Liang, Y., and Tarokh, V. (2018).
Spiderboost: A class of faster variance-reduced algorithms for nonconvex
optimization.
arXiv preprint arXiv:1810.10690.

[Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye, Y., Li, L.-J., and Fei-Fei,
L. (2018).
Distributed asynchronous optimization with unbounded delays: How slow
can you go?

In International Conference on Machine Learning, pages 5970-5979.

112

References ix

[8 Zhu, R., Niu, D., and Li, Z. (2018).
Asynchronous stochastic proximal methods for nonconvex nonsmooth
optimization.
arXiv preprint arXiv:1802.08880.

113

	Context
	Problem Formulation: Online and Finite Sum

	Background
	Vanilla Stochastic Gradient Descent: Large N
	Variance-Reduced SGD: Moderate N
	High-dimensional problems: large d
	Conclusion

