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Problem Formulation

Consider the optimization problem:

min
x∈X

F (x) :=
1

N

N∑
i=1

f(x, ξi) (P)

• X ⊆ Rd where d is problem dimension

• ξi indexes the data points/observations/samples

•

N

is the size of data set
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Variants

• Online optimization or N →∞

min
x∈X

F (x) := Eξ [f(x, ξ)]

• Use a regularizer h

min
x∈X

R(x) := F (x) +

h(x)

• Distributed/decentralized setting with K nodes

min
x∈X

K∑
k=1

Rk(x)
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Challenges of Big Data

• Large dimension d

• Hessian inverse [∇2F (x)]−1 requires O(d3) computations
• Approximate Hessian inverse still requires O(d2) computations, e.g., BFGS
• Very large d: must store x on the disk instead of RAM, write operation is bottleneck

• Large dataset size

N

• Even calculating the gradient ∇F (x) at every iteration impractical
• Cannot store entire data on a single machine
• Read/write operations become the bottleneck

• Ideally complexity should be O(dN)
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Example: Lasso Regression

Predictors for breast

cancer selected via

LASSO regression

[Wang et al., 2016]
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Example: Lasso Regression

• Given feature-label pairs (ai, bi) for each patient i ∈ {1, . . . , N}

• Optimization problem formulated as

min
x∈Rd

1

N

N∑
i=1

`(a>i x, bi) + λ ‖x‖1

• Loss function ` could be least-squares, logistic, hinge loss, etc.

• Non-zero entries of x correspond to features that explain bi

• `1-norm penalty “encourages” sparsity
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Example: Visual Object Recognition

CIFAR-10 dataset

contains 60000 labeled

images of 10 objects

[Krizhevsky, 2009]
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Example: Neural Networks

• Given feature-label pairs (ai, bi), optimization problem is

min
x

1

N

N∑
i=1

f(x, (ai, bi))

• Objective f is non-convex and may take the form

f(x, (ai, bi)) = `(

NN

(ai,x), bi)

• Here,

NN

(ai,x) is a non-linear function of x, and

• structure of

NN

() is defined by the neural network
• elements of x are weights/parameters of the network

• ∇xNN(ai,x) can be efficiently calculated via back-propagation

• Deep Learning community focuses on designing

NN

• Optimization community focuses on solving (GD) for general f
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Example: Recommender Systems

13



Example: Non-negative Matrix Completion

• Given ratings matrix M ∈ Rm1×m2 with observed entries {Mij}(i,j)∈Ω

• Find the complete matrix X

• If X is suspected to be low-rank, solve [Recht et al., 2011]

min
X∈Rm1×m2

+

1

|Ω|
∑

(i,j)∈Ω

(Mi,j −Xi,j)
2 + λ ‖X‖?

• Here, ‖X‖? encourages X to be low-rank

• High-dimensional problem: since d = m1m2 � |Ω| = N
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How to compare?

• Which is better: GD or SGD?

• Which variant of SGD should I use for a given problem?

• Such questions arise in any field

• Sometimes left unanswered, e.g. in, Deep Learning

• But, the landscape of SGD is much more structured
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Oracle Complexity

• Given x, an oracle provides us ∇f(x, ξi)

• Call to an oracle costs 1 unit

• So an algorithm that makes fewer calls to the oracle is better!

• Oracle complexity is the cost required to obtain a desired accuracy

Oracle complexity of SGD: convex objectives

For general convex objective functions, SGD requires O(
Ld

ε2
) calls to oracle in order to

achieve an optimality gap of ε.

• Terms within O may be initialization dependent

• Notation hides away many complexities

• Gap measured by ‖x− x?‖2, ‖∇F (x)‖2, or F (x)− F (x?)
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State-of-the-art in SGD

• New avenues for applying SGD emerge every year

• Several variants of SGD are proposed every month

• Papers analyzing performance of these variants come up everyday

• Difficult to consolidate and maintain perspective
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This Tutorial

• Unified view of many SGD variants

• Based on recent results, but readily accessible: “easy” math

• First timers: do not try to understand it all, but do ask questions

• Up-and-comers: identify gaps and target them, also keep asking questions

• Experts: what new result am I unaware of?

• Later: get slides from my website

19
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Convex Functions: Zeroth Order Condition

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f(θx + (1− θ)y)

θf(x) + (1− θ)f(y)

x

f
(x

)
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Convex Functions: First and Second Order Conditions

Definition

A function f is convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉

Alternatively: eigenvalues of (∇2F (x)) ≥ 0

f(y)

f(x) + 〈∇
f(x),y

− x〉

x

x

f
(x

)

24



Strongly Convex Functions

Strongly Convex

25



Strongly Convex Functions: Quadratic Lower Bound

Definition

A function F is µ-strongly convex if (a) its domain is a convex set; and (b) it satisfies

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2

where µ > 0. Alternatively, eigenvalues of (∇2F (x)) ≥ µ

`2-norm square example

The function f(x) =
1

2
‖x‖2 is 1-strongly convex

Least-squares example

Is the lasso regression objective strongly convex? Recall

R(x) =
1

N

N∑
i=1

(a>i x− bi)2 + λ ‖x‖1.

Show that for this case µ = smallest eigenvalue of
1

N

N∑
i=1

aia
>
i

26
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N
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Smooth Functions

Smooth

28



Smooth Functions: Quadratic Upper Bound

Definition

A function F is L-smooth

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖x− y‖2

Alternatively: eigenvalues of (∇2F (x)) ≤ L

29



Bregman Divergence

• Bregman divergence over a function F is defined as

DF (x,y) = F (y)− F (x)− 〈∇F (x),y − x〉

• Bregman divergence is not symmetric (and not a metric) but satisfies

µ

2
‖x− y‖2 ≤DF (x,y) ≤

L

2
‖x− y‖2

1

2

L

‖∇F (x)−∇F (y)‖2 ≤DF (x,y) ≤ 1

2µ
‖∇F (x)−∇F (y)‖2
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Non-smooth convex functions

• If h is non-smooth convex, may still define subgradient v(x) ∈ ∂h(x)

• Satisfies first order convexity condition as usual

f(y) ≥ f(x) + 〈v(x),y − x〉

• Optimality condition for x? = arg min
x

f(x):

v(x?) = 0 ∈ ∂h(x?)
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Projection Operator

• Define the projection over a set X as

PX (x) = arg min
y∈X

1

2
‖y − x‖2

• Equivalent formulation

PX (x) = arg min
y

1

2
‖y − x‖2 + 11X (x)

where the indicator function is defined as

11X (x) =

0 x ∈ X

∞ x /∈ X
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Proximal Operator

• Proximal operator generalizes projection

proxh(x) = y? = arg min
y

1

2
‖y − x‖2 + h(x)

• Useful property: differentiate and equate to zero

y? − x + v(y?) = 0

where y? = proxh(x) and v(y?) ∈ ∂h(y?)
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Vanilla Stochastic Gradient Descent: Large N
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Gradient Descent vs. Stochastic Gradient Descent

• Gradient descent for solving (P)

xt+1 = PX

(
xt −

η

N

N∑
i=1

∇f(xt, ξi)

)
• N oracle calls per iteration

• Stochastic gradient descent for solving (P)

xt+1 = PX (xt − η∇f(xt, ξit))

where it ∈ {1, . . . , N} is a random number.

• Descent direction on average: expectation w.r.t. it

Eit [∇f(xt, ξit)] =
1

N

N∑
i=1

f(xt, ξi) = ∇F (xt)
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Intuition

• SGD more efficient at accessing data

• handles redundancy in dataset better
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Intuition

• SGD more efficient

at accessing data

• handles redundancy

in dataset better

• consider lasso

example: features

ai ∈
span(a(1),a(2),a(3))
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History of SGD

• Given (X,Y) observations, let Φ(X) be a transformation

• SGD has been applied to specific problems

Algorithm Loss Gradient/Subgradient

LMS (Widrow-Hoff’60)
1

2
(Y − Φ(X)>x)2 (Φ(X)>x− Y)Φ(X)

Perceptron (Rosenblatt’57) [−Y〈Φ(X),x〉]+ −YΦ(X)11Y〈Φ(X),x〉≤0

SVM (Cortes-Vapnik’95)
λ

2
‖x‖2 + [1− Y〈Φ(X),x〉]+ λx− YΦ(X)11Y〈Φ(X),x〉≤1
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Assumptions

L-smoothness

DF (x,y) ≤ L

2
‖x− y‖2

µ-convexity

DF (x,y) ≥ µ

2
‖x− y‖2

Bounded Variance

Eit
[
‖∇f(x, ξit)‖

2
]
≤ σ2 + c ‖∇F (x)‖2

⇒ Eit
[
‖∇f(x?, ξit)‖

2
]
≤ σ2

provided ∇F (x?) = 0 and c ≥ 1.

σ2 is the inherent data variance
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Strong Convexity and Smoothness: Condition Number

42



Oracle Complexity for SGD: Strongly Convex + Smooth

Lemma (SGD: Strongly Convex + Smooth [Bottou et al., 2018])

For L-smooth, µ-convex functions, SGD incurs oracle complexity of O
(
L

µε

)
.

For simplicity, consider unconstrained version: xt+1 − xt = η∇f(xt, ξit)

Proof: Step 1. Quadratic upper bound (L-smootheness):

F (xt+1) ≤ F (xt) + 〈∇F (xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= F (xt)− η〈∇F (xt),∇f(xt, ξit)〉+
η2L

2
‖∇f(xt, ξit)‖

2

43

Update Equation

xt+1 − xt = η∇f(xt, ξit)
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SGD: Strongly Convex + Smooth

Step 2. Take expectation

, use Eit [∇f(xt, ξit)] = ∇F (xt)

Eit [F (xt+1)] ≤ F (xt)− η〈∇F (xt),Eit [∇f(xt, ξit)]〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

= F (xt)− η〈∇F (xt),∇F (xt)〉+
η2L

2
Eit
[
‖∇f(xt, ξit)‖

2
]

≤ F (xt)− η
(

1−ηLc
2

)
‖∇F (xt)‖22 +

η2σ2L

2

≤ F (xt)−
η

2
‖∇F (xt)‖22 +

η2σ2L

2

Function decrement in SGD

Function value decreases (on average) only when the gradient is large!

44

Eit
[
‖∇f(x, ξit)‖

2
]

≤ σ2 + c ‖∇F (x)‖2

ηLc < 1
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SGD: Strongly Convex + Smooth

Step 3. Relate ‖∇F (xt)‖2 with optimality gap:

subtract F (x?) , and use strong convexity

Eit [F (xt+1)]−F (x?) ≤ F (xt)−F (x?)− η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ (1−µη)(F (xt)− F (x?)) +
η2σ2L

2

Set ∆t = E[F (xt+1)− F (x?)]

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

45

1

2
‖∇F (xt)‖2 ≥ µ(F (xt)− F (x?))
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SGD: Strongly Convex + Smooth

One-step inequality

∆t+1 ≤ (1− µη)∆t +
η2σ2L

2

Step 4. Obtain final inequality:

Apply recursively over t = 1, . . . , T :

∆T+1 ≤ (1− µη)T∆1 +
η2σ2L

2

1

µη

46
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SGD: Strongly Convex + Smooth

Final inequality

∆T+1 ≤ (1− µη)T∆1 +
ησ2L

2µ

Step 5. Pick η:

• Equate each term to ε⇒ η = O(
µε

σ2L
) (ignore unimportant constants)

• Solve for T : (1− µη)T = ε and use log(1− µη) ≈ −µη to obtain

T = O
(
σ2L

µε
log

(
1

ε

))
≈ O

(
σ2L

µε

)

47
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Final inequality

∆T+1 ≤ (1− µη)T∆1 +
ησ2L

2µ
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Practical Considerations

• With fixed η, SGD converges fast, but slows when optimality gap is O(η)

• Can select a diminishing step-size to obtain slight improvement

• Other approach: half the step-size when progress stalls [Bottou et al., 2018]
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Oracle Complexity for SGD: Smooth

Lemma (SGD: smooth)

For L-smooth functions, SGD incurs oracle complexity of O
(
L

ε2

)
.

Proof for unconstrained version: xt+1 − xt = η∇f(xt, ξit).

Recall from L-smoothness and ηLc < 1 (here: ∆t = E[F (xt)]− F (x?) ≥ 0):

∆t+1 ≤ ∆t −
η

2
‖∇F (xt)‖2 +

η2σ2L

2

≤ ∆1 −
η

2

T∑
t=1

‖∇F (xt)‖2 +
Tη2σ2L

2
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SGD: Smooth

• Rearrange to obtain:

min
1≤t≤T

E[‖∇F (xt)‖22] ≤ 1

T

T∑
t=1

E[‖∇F (xt)‖22] ≤ ησ2L+
2∆1

ηT

• Equate each term to ε to obtain η =
ε

σ2L
and

T = O
(
σ2L

ε2

)
oracle calls required to reach close to a first order stationary point
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Variance-Reduced SGD: Moderate N

51



Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε )
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε )
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52



Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε )
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε )
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52



Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε )
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε )
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52



Gradient Descent or Stochastic Gradient Descent?

Figure 1: Gradient Descent Figure 2: Stochastic Gradient Descent

• Standard gradient descent requires O
(
L
µ log(1

ε )
)

iterations

• But each iteration requires N oracle calls: so oracle complexity is O
(
LN
µ log(1

ε )
)

• In contrast, SGD requires O
(
L
µε

)
oracle calls: independent of N

52



Speeding up SGD?

GD

SGD

# oracle calls

lo
g

(e
xc

es
s

lo
ss

)
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Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi)

(mini-batch)

54



Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi)

(mini-batch)

54



Variance Reduction

• We consider the generic SGD algorithm:

xt+1 = xt − ηgt

where gt is an unbiased gradient approximation

• Example:

gt = 1
N

N∑
i=1

∇f(xt, ξi) (GD)

gt = ∇f(xt, ξit) (SGD)

gt = 1
|B|

∑
i∈B
∇f(xt, ξi) (mini-batch)

54



Effect of Mini Batching

• Consider b random variables {Xi}bi=1 such that Vi(Xi) = σ2

• Then it holds that Vi(1
b

∑
i

Xi) = σ2

b

• So

# of iterations = O( Lµb log
(

1
ε

)
)

• But each iteration requires b oracle calls: oracle complexity still same

• In practice: lesser wall-clock time if gradients can be calculated in parallel
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Intuition: Shifted SGD

• Consider the loss functions

φ(x, ξi) = f(x, ξi)−a>i x

so that the overall objective remains the same, i.e.,

Φ(x) := 1
N

N∑
i=1

f(x, ξi)−a>i x = F (x)

provided that
∑
i

ai = 0.

• Note that ∇φ(x, ξi) = ∇f(x, ξi)−ai
• Recall that SGD performance depends on variance at x?

Vit [‖∇f(x?, ξit)‖] ≤ σ2
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Intuition: Shifted SGD

Shifted gradient

∇φ(x, ξi) = ∇f(x, ξi)−ai

• Goal: select ai so that Vit [∇φ(x?, ξit)] is small

• Hypothetically,

Vit [∇φ(x?, ξit)] = 0

requires

ai = ∇f(x?, ξi)

• Not practical as x? unknown

• Clue: availability of estimates of ∇f(x?, ξi) can help!
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Unified Theory of Gradient Approximation

• A unified approach to approximating gradients [Gorbunov et al., 2019]

• Suppose the unbiased gradient approximation gt satisfies:

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[σ2
t+1] ≤ (1− ρ)σ2

t + 2CDF (xt,x
?)

where A, B, C, σ2
t , and ρ > 0 are some constants (depend on L, µ, N) and Et[·]

is expectation with respect to the random data index at iteration t

Lemma (Simplified version of [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.
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Variance Reduced SGD: Proof

Lemma (General result, [Gorbunov et al., 2019])

The following rate result holds:

E[‖xT − x?‖2] ≤ (1− ρ
2 min{ 2µ

Aρ+2BC , 1})
TB0

where B0 depends only on the initialization.

Proof: Step 1: Expand the squares

and use unbiased property Et[gt] = ∇F (xt)

:

‖xt+1 − x?‖2 = ‖xt − x? − ηgt‖2

= ‖xt − x?‖2 − 2η〈xt − x?,gt〉+ η2 ‖gt‖2

⇒ Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]
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Variance Reduced SGD: Proof

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈xt − x?,∇F (xt)〉+ η2Et[‖gt‖2]

≤ (1−ηµ) ‖xt − x?‖2 − 2ηDF (xt,x
?) + η2Et[‖gt‖2]

Step 3: Use assumed bounds

Et[‖gt‖2] ≤ 2ADF (xt,x
?) +Bσ2

t

Et[‖xt+1 − x?‖2] ≤ (1− ηµ) ‖xt − x?‖2 + 2η (

Aη

− 1)DF (xt,x
?) +

Bη2σ2
t

2Bη2

ρ Et[σ2
t+1]≤ 2Bη2

ρ (1− ρ)σ2
t + 2Bη2

ρ 2CDF (xt,x
?)

Et[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1]

≤ (1− µη) ‖xt − x?‖2 +
(
1− ρ

2

) 2Bη2

ρ σ2
t + 2η2

(
Aρ+2BC

ρ − 1
η

)
DF (xt,x

?)

60

Step 2: Use Strong Convexity

DF (xt,x
?) +DF (x?,xt) =

〈xt − x?,∇F (xt)〉 ≥ µ ‖x− y‖2+

η = ρ
Aρ+2BC
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Variance Reduced SGD: Proof

Take full expectation

and apply recursively

E[‖xt+1 − x?‖2 + 2Bη2

ρ σ2
t+1] ≤

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
)
E[‖xt − x?‖2 + 2Bη2

ρ σ2
t ]

≤
(

1−min{ µρ
Aρ+2BC ,

ρ
2}
)t

E[‖x0 − x?‖2 + 2Bη2

ρ σ2
0]

Equivalently, to get E[‖xT+1 − x?‖2] ≤ ε needs

T =
log
(

1
ε

)
− log

(
1−min{ µρ

Aρ+2BC ,
ρ
2}
) ≈ log

(
1
ε

)
min{ µρ

Aρ+2BC ,
ρ
2}
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SAGA

Pick it at random from {1, 2, . . . , N}

hjt+1 =

hjt j 6= it

∇f(xt, ξit) j = it

gt = hitt+1 − hitt +
1

N

N∑
i=1

hit

h1
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t hNt

1
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SAGA Approximation is Unbiased

Unbiased? Eit [gt] = Eit
[
hitt+1

]
−Eit

[
hitt

]
+ 1

N

N∑
i=1

hit

= ∇F (xt) − 1
N

N∑
i=1

hit + 1
N
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i=1
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.
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SAGA Approximation: Variance

Since ∇F (x?) = 0, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)− hitt − Eit
[
∇f(x?, ξit)− hitt

]
= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[∥∥∥hitt −∇f(x?, ξit)

∥∥∥2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

∥∥hit −∇f(x?, ξi)
∥∥2

≤ 4LDF (xt,x
?) + 2σ2

t

65

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2
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SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
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N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N



SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
(
1− 1

N

)
∇f(xt, ξit) j = it with prob. 1

N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N



SAGA Approximation: σ2
t

Recall that

hjt+1 =

hjt j 6= it with prob.
(
1− 1

N

)
∇f(xt, ξit) j = it with prob. 1

N

Eit
[
σ2
t+1

]
= 1

N

N∑
j=1

Eit
[∥∥∥hjt+1 −∇f(x?, ξj)

∥∥∥2
]

= 1
N

N∑
j=1

[(
1− 1

N

) ∥∥∥hjt −∇f(x?, ξj)
∥∥∥2

+ 1
N ‖∇f(xt, ξj)−∇f(x?, ξj)‖2

]
≤

(
1− 1

N

)
σ2
t + 2L

N DF (xt,x
?)

66

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

ρ = 1
N , C = 2L

N



SAGA: Summary

Plugging in A = 2L, B = 2, C = 2L
N , and ρ = 1

N (ignoring constants)

O
(

max
{
N, Lµ

}
log
(

1
ε

))

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

Improves over SGD when N is not too large but high storage
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Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt) −∇F (yt) +∇F (yt)

68



Loopless SVRG

• Consider the loopless SVRG proposed in [Kovalev et al., 2019]

• A “loopless” modification of SVRG [Johnson and Zhang, 2013]

• Pick it at random from {1, 2, . . . , N} and set

gt = ∇f(xt, ξit)−∇f(yt, ξit) +∇F (yt)

yt+1 =

xt with prob. 1
N and calculate ∇F (xt)

yt with prob. 1− 1
N

• On average, 3 gradients evaluated per iteration

• Unbiased gradient

Eit [gt] = Eit [∇f(xt, ξit)]− Eit [∇f(yt, ξit)] +∇F (yt)

= ∇F (xt)

−∇F (yt) +∇F (yt)

68



Loopless SVRG: Approximation Properties

As in SAGA, add and subtract ∇f(x?, ξit) to write

gt = ∇f(xt, ξit)−∇f(x?, ξit) +∇f(x?, ξit)−∇f(yt, ξit)− Eit [∇f(x?, ξit)−∇f(yt, ξit)]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2Eit

[
‖∇f(xt, ξit)−∇f(x?, ξit)‖

2
]

+ 2Eit
[
‖∇f(yt, ξit)−∇f(x?, ξit)‖

2
]

= 2
N

N∑
i=1

‖∇f(xt, ξi)−∇f(x?, ξi)‖2 + 2
N

N∑
i=1

‖∇f(yt, ξi)−∇f(x?, ξi)‖2

≤ 4LDF (xt,x
?) + 2σ2

t

69

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇f(xt, ξi)−∇f(x?, ξi)‖2 ≤
f(x, ξi)− f(x?, ξi)− 〈∇f(x?, ξi),x− x?〉

A = 2L, B = 2
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Loopless SVRG: σ2
t

Recall that
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Loopless SVRG: Summary

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

SAGA max
{
N, Lµ

}
× log

(
1
ε

)
dN

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Loopless SVRG has almost same number of gradient calculations as SAGA but requires

same storage as SGD
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Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]

• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d
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• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73



Accelerated Variants

• Accelerated GD proposed by Nesterov in 1983: uses a momentum term

• But acceleration has not been achieved for classical SGD

• Indeed, momentum SGD is prone to error accumulation [Konevcnỳ et al., 2015]
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• But can it work for variance-reduced algorithms?

• Resolved partially in [Lin et al., 2015] and completely in [Allen-Zhu, 2017]

• Several variants since then, active area of research

Algorithm Oracle Complexity Storage

GD N × L
µ × log

(
1
ε

)
d

Accelerated GD N ×
√

L
µ × log

(
1
ε

)
d

SGD 1 × L
µ × 1

ε d

L-SVRG max
{
N, Lµ

}
× log

(
1
ε

)
d

Accelerated SVRG
(
N +

√
NL
µ

)
× log

(
1
ε

)
d

73



Accelerated Variants: Smooth + Convex

Algorithm Oracle Complexity

GD N × L × 1
ε

Accelerated GD N ×
√
L × 1√

ε

SGD 1 × L × 1
ε2

SAGA (N + L) × 1
ε

SVRG+ N log
(

1
ε

)
+ L

ε

Accelerated SVRG N log
(

1
ε

)
+
√

NL
ε
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Non-Convex Finite Sum: SPIDER

• Moderately large N ≤ ε−2

Algorithm Oracle Complexity

GD N × ε−1

SGD 1 × ε−2

SVRG/SAGA N2/3 × ε−1

SPIDER/SPIDERBoost N1/2 × ε−1

• SPIDER [Fang et al., 2018] and SPIDERBoost [Wang et al., 2018] rate optimal in

terms of N and ε

• Open problem: Adaptive step-size variant of SPIDER?
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Non-Convex Online: STORM

• SAGA/SVRG not meant for large N

• SARAH [Nguyen et al., 2017], SPIDER proposed calculating “checkpoint”

gradients every ε−1 samples: mega batches hard to tune

• STORM uses momentum + adaptive step-size to achieve optimal rate using single

loop

Algorithm Oracle Complexity

SGD ε−2

SVRG+ ε−5/3

SPIDER/SPIDERBoost ε−3/2

STORM ε−3/2

• Open problem: can STORM to handle X , regularizers, etc?
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Distributed Setting

• Consider the problem

min
x∈X

∑
k∈V

Fk(x)

• Data points {ξki }Ni=1 available only at k-th node

• Central server aids in parallelizing: K nodes can offer K-fold speedup in

wall-clock time

• State-of-the-art: Parallel Restarted SPIDER matches centralized O(ε−3/2) for

online non-convex

• Open problems: Distributed version of STORM? Accelerated variants?
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Open Problem: Decentralized Setting

• Again consider the problem

min
x∈X

∑
k∈V

Fk(x)

• No central server, only communication between peers is allowed

• All existing approaches are either suboptimal or cannot handle X
• For non-convex, optimal O(ε−3/2) achieved in [Sun et al., 2019]

• Open problem: can accelerated rates be obtained for convex decentralized case?
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High-dimensional problems: large d

79



• When d is large, accessing ∇F (x) becomes difficult

• E.g.: in matrix completion, ∇F (X) ∈ Rm×n may be unwieldy (d = mn)

• But a few coordinates of ∇F (X) may be available

• Motivates coordinate descent and sketched gradient methods
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Outline

1 Context
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Hogwild!
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Sketched Gradient Descent

• Consider recently proposed SEGA [Hanzely et al., 2018]

• Assumes availability of P∇F (x) where P ∈ Rp×d where p� d

• We look at the special case of p = 1 and

P = e>it =
[
0 0 . . . 1 . . . 0 0

]
where it is randomly selected from {1, . . . , N}
• Sketched gradient is not an unbiased estimator!
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SEGA: single coordinate update

• Unbiased gradient estimate must be maintained

• Starting with h1 = 0, we have

hjt+1 =

[∇F (xt)]j j = it

hjt j 6= it

[gt]j =

d[∇F (xt)]j + (1− d)hjt j = it

hjt j 6= it

• Maintain two d× 1 vectors, but update only 1 coordinate at a time

• Can we get GD-like performance with such sporadic updates?
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SEGA: Unbiased Gradient Estimate

• Let us write in compact form:

ht+1 = ht + eit�(∇F (xt)− ht)

gt = ht + deit�(∇F (xt)− ht)

where � denotes element-wise product

• Note that E[eit ] =
1

d
• Unbiased gradient:

Eit [gt] = ht + dEit [eit ]� (∇F (xt)− ht) = ∇F (xt)
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SEGA: Approximation Properties

Proceeding as earlier (since ∇F (x?) = 0)

gt = d(eit �∇F (xt))−deit � ht + Eit [deit � ht]

= X + Y − Eit [Y]

Eit
[
‖gt‖2

]
≤ 2d2Eit

[
‖eit �∇F (xt)‖2

]
+ 2d2Eit

[
‖eit � ht‖2

]
= 2d ‖∇F (xt)‖2 + 2d ‖ht‖2

≤ 4dLDF (xt,x
?) + 2dσ2

t

85

E[‖X + Y − E[Y]‖2] ≤ 2E[‖X‖2] + 2E[‖Y‖2]

L-smoothness
1

2L ‖∇F (xt)−∇F (x?)‖2 ≤
F (x)− F (x?) = DF (xt,x

?)
A = 2dL, B = 2d
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SEGA Approximation: σ2
t

Recall that ht+1 = ht + eit � (∇F (xt)− ht), so

Eit
[
σ2
t+1

]
= Eit

[
‖ht+1‖2

]
= Eit

[
‖ht + eit � (∇F (xt)− ht)‖2

]

= Eit
[∥∥∥(I− eite

>
it )ht + eite

>
it∇F (xt)

∥∥∥2
]

= Eit
[∥∥∥(I− eite

>
it )ht

∥∥∥2
]

+ Eit
[
‖eit � (∇F (xt))‖2

]
=

(
1− 1

d

)
Eit
[
‖ht‖2

]
+

1

d
‖∇F (xt)‖2

≤
(

1− 1

d

)
σ2
t +

2L

d
DF (xt,x

?)
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Eit
[
(I− eite

>
it )eite

>
it

]
=

Eit
[
eite

>
it

]
− Eit

[
eite

>
iteite

>
it

]
= 0

L-smoothness
1

2L ‖∇F (xt)‖2 ≤ DF (xt,x
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ρ =
1

d
, C =

2L

d
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SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87



SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87



SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87



SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87



SEGA Summary

• GD uses d gradient entries per iteration

• SEGA uses 1 gradient entry per iteration

• Equivalently, GD incurs d× per iteration cost

• Define oracle complexity = d× number of gradients required to achieve ε-accuracy

Algorithm Oracle Complexity Per-iteration cost

GD d × L
µ × log

(
1
ε

)
d

SEGA d × L
µ × log

(
1
ε

)
1

SEGA is competitive with GD even while looking at one entry at a time!

87



Outline

1 Context

2 Background

3 Vanilla Stochastic Gradient Descent: Large N

4 Variance-Reduced SGD: Moderate N

5 High-dimensional problems: large d

Gradient sketching

Hogwild!

6 Conclusion
88



Large N and d

• Large N ⇒ cannot compute even one entry exactly

• Large d⇒ cannot compute full stochastic gradient

• Large-scale matrix completion

• Observations Z ∈ RNr×Nc

min
L,R

∥∥Z− LR>
∥∥2
F

+
µ

2
‖L‖2F +

µ

2
‖R‖2F

where L ∈ RNr×r, and R ∈ RNc×r

• Low-rank assumption ⇒ r � Nc, Nr

• Number of observations N = NrNc is extremely large
• Number of variables d = (Nc +Nr)r is also very large

• Cannot load the variables or observations into the RAM
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Curse of Parallelization: Beyond Oracle Complexity

• SGD is inherently serial

• Consider system with m cores or m distributed servers

• SGD achives ε accuracy in O(
σ2

ε
) oracle calls

• To use multi-core systems, one must parallelize, e.g., using minibatch

m-SGD xt+1 = xt −
η

m

∑
j∈It

∇f(xt, ξj)

where m = |It| stochastic gradients are computed in parallel

• What is the wall-clock time?
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Curse of Parallelization: Wall Clock Time

• Let tg = time to calculate ∇f(x, ξj) and tr = time to read/write xt

• If tr � tg, then

SGD: Total wall-clock time = tg × σ2/ε

m-SGD: Total wall-clock time = tg × σ2/mε

• If tr ≈ tg, writes are not concurrent

SGD: Total wall-clock time = (tg + 2tr)× σ2/ε ≈ O(σ2/ε)

m-SGD: Total wall-clock time = (tg + (m+ 1)tr)× σ2/mε ≈ O(σ2/ε)

• Gains due to parallelization offset by the limited memory throughput
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Sparse Problem Structure

• Consider the problem [Recht et al., 2011]

x? = arg min
x
F (x) :=

1

N

N∑
i=1

f(x, ξi)

where ξi ⊆ {1, . . . , n} is an hyperedge

• E.g., ξi = {1, 3, 4} and f(x, ξi) depends on x1, x3, x4

• Sparsity: |ξi| � d

• Function f : Rn × E → R depends only on the subset of variables in ξi

• So only a few entries of ∇f(x, ξi) are non-zero

• Indeed, [∇f(x, ξi)]j = 0 for all j /∈ ξi
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• Function f : Rn × E → R depends only on the subset of variables in ξi
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Hogwild!

• Go hog wild: read and write x without locking

• Each core does the following:

• reads x from the memory;
• evaluates ∇f(x, ξ);
• updates x; and
• writes x to memory one entry at a time

without synchronizing with other cores

• This will lead to inconsistent reads and overwrites: recipe for disaster?

• Key idea: collisions rare if ξi ∩ ξj = ∅ with high probability
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Hogwild Algorithm

• Define [x]ξ ∈ Rd×1 to contain only those entries that are in ξ, i.e.,

([x]ξ)j =

0 j /∈ ξ

xj j ∈ ξ

• The full algorithm takes the form:

Algorithm 1 Hogwild! (at each core, in parallel)

1: repeat

2: Sample an hyperedge ξ

3: Let [x̂]ξ = an inconsistent read of [x]ξ
4: Evaluate [u]ξ = −η∇f([x̂]ξ, ξ)

5: for v ∈ ξ do:

6: xv ← xv + uv

7: end for

8: until number of edges ≤ T
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• The full algorithm takes the form:
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Perturbed SGD

• Cannot write Hogwild in classical SGD form

• Instead consider perturbed SGD with some random variable ξt

xt+1 = xt − η∇f(x̂t, ξt)

where x̂t = xt + nt with noise nt independent of ξt

• Defining δt := E[‖xt − x?‖], then

Lemma (Perturbed SGD: Strongly Convex + Smooth [Mania et al., 2017])

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]
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Perturbed SGD Proof

Lemma (Perturbed SGD: Strongly Convex + Smooth)

For L-smooth, µ-convex functions f , perturbed SGD satisfies

δt+1 ≤ (1− ηµ)δt + η2E[‖∇f(x̂t, ξt)‖2] + 2ηµE[‖x̂t − xt‖2] + 2ηE[〈x̂t − xt,∇f(xt, ξt)〉]

Proof: Expand the optimality gap

and add-subtract 〈x̂t,∇f(x̂t, ξt)〉

‖xt+1 − x?‖2 = ‖xt − x? − η∇f(x̂t, ξt)‖
= ‖xt − x?‖2 − 2η〈x̂t − x?,∇f(x̂t, ξt)〉+ η2 ‖∇f(x̂t, ξt)‖2 + 2η〈x̂t − xt,∇f(x̂t, ξt)〉

Et[‖xt+1 − x?‖2] = ‖xt − x?‖2 − 2η〈x̂t − x?,∇F (x̂t)〉+ η2 ‖∇f(x̂t, ξt)‖2

+ 2ηE〈x̂t − xt,∇f(x̂t, ξt)〉

Lemma follows from using µ-strong convexity and triangle inequality:

〈x̂t − x?,∇F (x̂t)〉 ≥ µ ‖x̂t − x?‖2 ≥ µ

2
‖xt − x?‖2 − µ ‖x̂t − xt‖2
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Hogwild as Perturbed SGD

• Let ξt be the t-th sampled hyperedge

• Let x̄t be the contents before t-th read

• Also, recall that [x]ξt is an inconsistent read, and define full vector x̂t:

[x̂t]v =

[x̂t]v v ∈ ξt – these are changed

[x̄t]v v /∈ ξt – these remain same as before the read

• x̂t independent of ξt (can be relaxed)

• Bounded gradients: ‖f(x̂, ξ)‖ ≤M (can be relaxed)

• Key idea: after T updates are written to the memory:

xT = x1 − η∇f(x̂1, ξ1)− η∇f(x̂2, ξ2)− . . .− η∇f(x̂T−1, ξT−1)

or

xt+1 = xt − η∇f(x̂t, ξt)
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Hogwild Abstractions: τ and ∆

• ∆ = average degree of conflict graph

• Max. number of hyperedges that overlap with a given hyperedge = τ

• τ = 0 implies no overlap (classical SGD)

• τ can be proxy for number of cores: τ read-writes in parallel

• Consider, for instance, times i and j:

• if i < j and ξi ∩ ξj = ∅, ∇f(x̂i, ξi) written before x̂j read: contribution of

∇f(x̂i, ξi) included into x̂j and xj

• If i > j and ξi ∩ ξj = ∅, then neither x̂j nor xj contain any contribution of

∇f(x̂i, ξi)

• Edges ξi ∩ ξj = ∅ if |i− j| > τ
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Hogwild: modeling inconsistent reads

• Let Stι be diagonal matrix with entries in {−1, 0, 1}
• Define conflicting edges: It := {t− τ, t− τ + 1, . . . t− 1, t+ 1, . . . , t+ τ}
• Then, all possible update orders can be written as

x̂t − xt = η
∑
ι∈It

Stι∇f(x̂ι, ξι)

• Models all patterns of possibly partial updates while ξt is being processed
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Hogwild Analysis

Lemma

The following bounds hold:

E[‖x̂t − xt‖2] ≤ η2M

(
2τ + 8τ2 ∆

d

)
E[〈x̂t − xt,∇f(x̂t, et)〉] ≤ 4ηM2τ

∆

d

We use ‖∇f(x̂t, ξι)‖ ≤M

and Pr(ξι ∩ ξt 6= ∅) =
2∆

d

E[〈x̂t − xt,∇f(x̂t, ξt)〉] = η
∑
ι∈It

E[〈Stι∇f(x̂ι, ξι),∇f(x̂t, ξt)〉]

≤ ηM2
∑
ι

Pr [ξι ∩ ξt 6= ∅]

≤ 2ηM2τ
2∆

d
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Hogwild Analysis

Since ‖Su‖2 ≤ ‖u‖, it holds that

E[‖x̂t − xt‖2] = η2E[‖
∑
ι∈It

Stι∇f(x̂ι, ξι)‖2]

= η2
∑
ι∈It

E
∥∥Stι∇f(x̂ι, ξι)

∥∥2
+ η2

∑
ι6=κ

E[〈Stι∇f(x̂ι, ξι),S
t
κ∇f(x̂κ, ξκ)〉]

≤ η2
∑
ι

E ‖∇f(x̂ι, ξι)‖2 + η2
∑
ι6=κ

E[‖∇f(x̂ι, ξι)‖ ‖∇f(x̂κ, ξκ)‖ 11ξι∩ξκ 6=∅]

≤ η2M2(2τ + 4τ2Pr [ξι ∩ ξκ 6= ∅]) = 2η2M2τ(1 + 2τ(2∆/d))

Substituting all bounds,

δt+1 ≤ (1− ηµ)δt + η2M2C1

where C1 = 1 + 8τ∆/d+ 4ηµτ + 16ηµτ2∆/d.

Yields O(
L

µε
) oracle complexity (same as SGD) provided τ is not too large
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State-of-the-art for high-dimensional

• Asynchronous SVRG [Mania et al., 2017] is the variance-reduced version of

Hogwild!

• Extensions to non-convex settings with more realistic assumptions

[Cannelli et al., 2019]

• Very large delays [Zhou et al., 2018]

• Proximal variants [Zhu et al., 2018]

• Decentralized variants? Skewed sparsity profile?
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Conclusion
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Summary

• Oracle complexity results for different SGD variants

• Intuition regarding variance reduction and coordinate descent

• When to apply which version?

• Unified and simplified proofs (extend to non-strongly convex settings also)

• State-of-the-art and open problems
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